ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hybrid Variance-Reduced Method for Decentralized Stochastic Non-Convex Optimization

89   0   0.0 ( 0 )
 نشر من قبل Usman Khan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers decentralized stochastic optimization over a network of $n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an $epsilon$-accurate first-order stationary point of the sum of the local costs. We focus on an online setting, where each node accesses its local cost only by means of a stochastic first-order oracle that returns a noisy version of the exact gradient. In this context, we propose a novel single-loop decentralized hybrid variance-reduced stochastic gradient method, called GT-HSGD, that outperforms the existing approaches in terms of both the oracle complexity and practical implementation. The GT-HSGD algorithm implements specialized local hybrid stochastic gradient estimators that are fused over the network to track the global gradient. Remarkably, GT-HSGD achieves a network topology-independent oracle complexity of $O(n^{-1}epsilon^{-3})$ when the required error tolerance $epsilon$ is small enough, leading to a linear speedup with respect to the centralized optimal online variance-reduced approaches that operate on a single node. Numerical experiments are provided to illustrate our main technical results.



قيم البحث

اقرأ أيضاً

In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potenti ally non-convex objective function. The objective function is assumed to be the sum of local objective functions available at each WN, with each node having access to only the stochastic samples of its local objective function. In contrast to the existing approaches, we employ a momentum based single loop distributed algorithm which eliminates the need of computing large batch size gradients to achieve variance reduction. We propose two algorithms one with adaptive and the other with non-adaptive learning rates. We show that the proposed algorithms achieve the optimal computational complexity while attaining linear speedup with the number of WNs. Specifically, the algorithms reach an $epsilon$-stationary point $x_a$ with $mathbb{E}| abla f(x_a) | leq tilde{O}(K^{-1/3}T^{-1/2} + K^{-1/3}T^{-1/3})$ in $T$ iterations, thereby requiring $tilde{O}(K^{-1} epsilon^{-3})$ gradient computations at each WN. Moreover, our approach does not assume identical data distributions across WNs making the approach general enough for federated learning applications.
We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, call ed GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.
166 - Yangyang Xu 2020
Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases . Most of them require a large number of samples in some or all iterations of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for solving nonconvex nonsmooth stochastic problems. With a momentum-based variance reduction technique, PStorm can achieve the optimal complexity result $O(varepsilon^{-3})$ to produce a stochastic $varepsilon$-stationary solution, if a mean-squared smoothness condition holds and $Theta(varepsilon^{-1})$ samples are available for the initial update. Different from existing optimal methods, PStorm can still achieve a near-optimal complexity result $tilde{O}(varepsilon^{-3})$ by using only one or $O(1)$ samples in every update. With this property, PStorm can be applied to online learning problems that favor real-time decisions based on one or $O(1)$ new observations. In addition, for large-scale machine learning problems, PStorm can generalize better by small-batch training than other optimal methods that require large-batch training and the vanilla SGM, as we demonstrate on training a sparse fully-connected neural network and a sparse convolutional neural network.
We consider the nonsmooth convex composition optimization problem where the objective is a composition of two finite-sum functions and analyze stochastic compositional variance reduced gradient (SCVRG) methods for them. SCVRG and its variants have re cently drawn much attention given their edge over stochastic compositional gradient descent (SCGD); but the theoretical analysis exclusively assumes strong convexity of the objective, which excludes several important examples such as Lasso, logistic regression, principle component analysis and deep neural nets. In contrast, we prove non-asymptotic incremental first-order oracle (IFO) complexity of SCVRG or its novel variants for nonsmooth convex composition optimization and show that they are provably faster than SCGD and gradient descent. More specifically, our method achieves the total IFO complexity of $Oleft((m+n)logleft(1/epsilonright)+1/epsilon^3right)$ which improves that of $Oleft(1/epsilon^{3.5}right)$ and $Oleft((m+n)/sqrt{epsilon}right)$ obtained by SCGD and accelerated gradient descent (AGD) respectively. Experimental results confirm that our methods outperform several existing methods, e.g., SCGD and AGD, on sparse mean-variance optimization problem.
This paper considers decentralized minimization of $N:=nm$ smooth non-convex cost functions equally divided over a directed network of $n$ nodes. Specifically, we describe a stochastic first-order gradient method, called GT-SARAH, that employs a SARA H-type variance reduction technique and gradient tracking (GT) to address the stochastic and decentralized nature of the problem. We show that GT-SARAH, with appropriate algorithmic parameters, finds an $epsilon$-accurate first-order stationary point with $Obig(maxbig{N^{frac{1}{2}},n(1-lambda)^{-2},n^{frac{2}{3}}m^{frac{1}{3}}(1-lambda)^{-1}big}Lepsilon^{-2}big)$ gradient complexity, where ${(1-lambda)in(0,1]}$ is the spectral gap of the network weight matrix and $L$ is the smoothness parameter of the cost functions. This gradient complexity outperforms that of the existing decentralized stochastic gradient methods. In particular, in a big-data regime such that ${n = O(N^{frac{1}{2}}(1-lambda)^{3})}$, this gradient complexity furthers reduces to ${O(N^{frac{1}{2}}Lepsilon^{-2})}$, independent of the network topology, and matches that of the centralized near-optimal variance-reduced methods. Moreover, in this regime GT-SARAH achieves a non-asymptotic linear speedup, in that, the total number of gradient computations at each node is reduced by a factor of $1/n$ compared to the centralized near-optimal algorithms that perform all gradient computations at a single node. To the best of our knowledge, GT-SARAH is the first algorithm that achieves this property. In addition, we show that appropriate choices of local minibatch size balance the trade-offs between the gradient and communication complexity of GT-SARAH. Over infinite time horizon, we establish that all nodes in GT-SARAH asymptotically achieve consensus and converge to a first-order stationary point in the almost sure and mean-squared sense.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا