ﻻ يوجد ملخص باللغة العربية
Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases. Most of them require a large number of samples in some or all iterations of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for solving nonconvex nonsmooth stochastic problems. With a momentum-based variance reduction technique, PStorm can achieve the optimal complexity result $O(varepsilon^{-3})$ to produce a stochastic $varepsilon$-stationary solution, if a mean-squared smoothness condition holds and $Theta(varepsilon^{-1})$ samples are available for the initial update. Different from existing optimal methods, PStorm can still achieve a near-optimal complexity result $tilde{O}(varepsilon^{-3})$ by using only one or $O(1)$ samples in every update. With this property, PStorm can be applied to online learning problems that favor real-time decisions based on one or $O(1)$ new observations. In addition, for large-scale machine learning problems, PStorm can generalize better by small-batch training than other optimal methods that require large-batch training and the vanilla SGM, as we demonstrate on training a sparse fully-connected neural network and a sparse convolutional neural network.
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method (
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. This point of view covers the stochastic gradient descent method,
Stochastic gradient descent (SGD) is one of the most widely used optimization methods for parallel and distributed processing of large datasets. One of the key limitations of distributed SGD is the need to regularly communicate the gradients between
In this paper, we consider non-convex stochastic bilevel optimization (SBO) problems that have many applications in machine learning. Although numerous studies have proposed stochastic algorithms for solving these problems, they are limited in two pe
Convex composition optimization is an emerging topic that covers a wide range of applications arising from stochastic optimal control, reinforcement learning and multi-stage stochastic programming. Existing algorithms suffer from unsatisfactory sampl