ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum-based variance-reduced proximal stochastic gradient method for composite nonconvex stochastic optimization

167   0   0.0 ( 0 )
 نشر من قبل Yangyang Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Yangyang Xu




اسأل ChatGPT حول البحث

Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases. Most of them require a large number of samples in some or all iterations of the improved SGMs. In this paper, we propose a new SGM, named PStorm, for solving nonconvex nonsmooth stochastic problems. With a momentum-based variance reduction technique, PStorm can achieve the optimal complexity result $O(varepsilon^{-3})$ to produce a stochastic $varepsilon$-stationary solution, if a mean-squared smoothness condition holds and $Theta(varepsilon^{-1})$ samples are available for the initial update. Different from existing optimal methods, PStorm can still achieve a near-optimal complexity result $tilde{O}(varepsilon^{-3})$ by using only one or $O(1)$ samples in every update. With this property, PStorm can be applied to online learning problems that favor real-time decisions based on one or $O(1)$ new observations. In addition, for large-scale machine learning problems, PStorm can generalize better by small-batch training than other optimal methods that require large-batch training and the vanilla SGM, as we demonstrate on training a sparse fully-connected neural network and a sparse convolutional neural network.



قيم البحث

اقرأ أيضاً

240 - Tianyi Chen , Tianyu Ding , Bo Ji 2020
Sparsity-inducing regularization problems are ubiquitous in machine learning applications, ranging from feature selection to model compression. In this paper, we present a novel stochastic method -- Orthant Based Proximal Stochastic Gradient Method ( OBProx-SG) -- to solve perhaps the most popular instance, i.e., the l1-regularized problem. The OBProx-SG method contains two steps: (i) a proximal stochastic gradient step to predict a support cover of the solution; and (ii) an orthant step to aggressively enhance the sparsity level via orthant face projection. Compared to the state-of-the-art methods, e.g., Prox-SG, RDA and Prox-SVRG, the OBProx-SG not only converges to the global optimal solutions (in convex scenario) or the stationary points (in non-convex scenario), but also promotes the sparsity of the solutions substantially. Particularly, on a large number of convex problems, OBProx-SG outperforms the existing methods comprehensively in the aspect of sparsity exploration and objective values. Moreover, the experiments on non-convex deep neural networks, e.g., MobileNetV1 and ResNet18, further demonstrate its superiority by achieving the solutions of much higher sparsity without sacrificing generalization accuracy.
In this paper, we propose a unified view of gradient-based algorithms for stochastic convex composite optimization by extending the concept of estimate sequence introduced by Nesterov. This point of view covers the stochastic gradient descent method, variants of the approaches SAGA, SVRG, and has several advantages: (i) we provide a generic proof of convergence for the aforementioned methods; (ii) we show that this SVRG variant is adaptive to strong convexity; (iii) we naturally obtain new algorithms with the same guarantees; (iv) we derive generic strategies to make these algorithms robust to stochastic noise, which is useful when data is corrupted by small random perturbations. Finally, we show that this viewpoint is useful to obtain new accelerated algorithms in the sense of Nesterov.
Stochastic gradient descent (SGD) is one of the most widely used optimization methods for parallel and distributed processing of large datasets. One of the key limitations of distributed SGD is the need to regularly communicate the gradients between different computation nodes. To reduce this communication bottleneck, recent work has considered a one-bit variant of SGD, where only the sign of each gradient element is used in optimization. In this paper, we extend this idea by proposing a stochastic variant of the proximal-gradient method that also uses one-bit per update element. We prove the theoretical convergence of the method for non-convex optimization under a set of explicit assumptions. Our results indicate that the compressed method can match the convergence rate of the uncompressed one, making the proposed method potentially appealing for distributed processing of large datasets.
In this paper, we consider non-convex stochastic bilevel optimization (SBO) problems that have many applications in machine learning. Although numerous studies have proposed stochastic algorithms for solving these problems, they are limited in two pe rspectives: (i) their sample complexities are high, which do not match the state-of-the-art result for non-convex stochastic optimization; (ii) their algorithms are tailored to problems with only one lower-level problem. When there are many lower-level problems, it could be prohibitive to process all these lower-level problems at each iteration. To address these limitations, this paper proposes fast randomized stochastic algorithms for non-convex SBO problems. First, we present a stochastic method for non-convex SBO with only one lower problem and establish its sample complexity of $O(1/epsilon^3)$ for finding an $epsilon$-stationary point under Lipschitz continuous conditions of stochastic oracles, matching the lower bound for stochastic smooth non-convex optimization. Second, we present a randomized stochastic method for non-convex SBO with $m>1$ lower level problems (multi-task SBO) by processing a constant number of lower problems at each iteration, and establish its sample complexity no worse than $O(m/epsilon^3)$, which could be a better complexity than that of simply processing all $m$ lower problems at each iteration. Lastly, we establish even faster convergence results for gradient-dominant functions. To the best of our knowledge, this is the first work considering multi-task SBO and developing state-of-the-art sample complexity results.
Convex composition optimization is an emerging topic that covers a wide range of applications arising from stochastic optimal control, reinforcement learning and multi-stage stochastic programming. Existing algorithms suffer from unsatisfactory sampl e complexity and practical issues since they ignore the convexity structure in the algorithmic design. In this paper, we develop a new stochastic compositional variance-reduced gradient algorithm with the sample complexity of $O((m+n)log(1/epsilon)+1/epsilon^3)$ where $m+n$ is the total number of samples. Our algorithm is near-optimal as the dependence on $m+n$ is optimal up to a logarithmic factor. Experimental results on real-world datasets demonstrate the effectiveness and efficiency of the new algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا