ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast decentralized non-convex finite-sum optimization with recursive variance reduction

210   0   0.0 ( 0 )
 نشر من قبل Usman Khan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper considers decentralized minimization of $N:=nm$ smooth non-convex cost functions equally divided over a directed network of $n$ nodes. Specifically, we describe a stochastic first-order gradient method, called GT-SARAH, that employs a SARAH-type variance reduction technique and gradient tracking (GT) to address the stochastic and decentralized nature of the problem. We show that GT-SARAH, with appropriate algorithmic parameters, finds an $epsilon$-accurate first-order stationary point with $Obig(maxbig{N^{frac{1}{2}},n(1-lambda)^{-2},n^{frac{2}{3}}m^{frac{1}{3}}(1-lambda)^{-1}big}Lepsilon^{-2}big)$ gradient complexity, where ${(1-lambda)in(0,1]}$ is the spectral gap of the network weight matrix and $L$ is the smoothness parameter of the cost functions. This gradient complexity outperforms that of the existing decentralized stochastic gradient methods. In particular, in a big-data regime such that ${n = O(N^{frac{1}{2}}(1-lambda)^{3})}$, this gradient complexity furthers reduces to ${O(N^{frac{1}{2}}Lepsilon^{-2})}$, independent of the network topology, and matches that of the centralized near-optimal variance-reduced methods. Moreover, in this regime GT-SARAH achieves a non-asymptotic linear speedup, in that, the total number of gradient computations at each node is reduced by a factor of $1/n$ compared to the centralized near-optimal algorithms that perform all gradient computations at a single node. To the best of our knowledge, GT-SARAH is the first algorithm that achieves this property. In addition, we show that appropriate choices of local minibatch size balance the trade-offs between the gradient and communication complexity of GT-SARAH. Over infinite time horizon, we establish that all nodes in GT-SARAH asymptotically achieve consensus and converge to a first-order stationary point in the almost sure and mean-squared sense.



قيم البحث

اقرأ أيضاً

112 - Yossi Arjevani 2017
We study the conditions under which one is able to efficiently apply variance-reduction and acceleration schemes on finite sum optimization problems. First, we show that, perhaps surprisingly, the finite sum structure by itself, is not sufficient for obtaining a complexity bound of $tilde{cO}((n+L/mu)ln(1/epsilon))$ for $L$-smooth and $mu$-strongly convex individual functions - one must also know which individual function is being referred to by the oracle at each iteration. Next, we show that for a broad class of first-order and coordinate-descent finite sum algorithms (including, e.g., SDCA, SVRG, SAG), it is not possible to get an `accelerated complexity bound of $tilde{cO}((n+sqrt{n L/mu})ln(1/epsilon))$, unless the strong convexity parameter is given explicitly. Lastly, we show that when this class of algorithms is used for minimizing $L$-smooth and convex finite sums, the optimal complexity bound is $tilde{cO}(n+L/epsilon)$, assuming that (on average) the same update rule is used in every iteration, and $tilde{cO}(n+sqrt{nL/epsilon})$, otherwise.
73 - Ran Xin , Usman A. Khan , 2020
In this paper, we study decentralized online stochastic non-convex optimization over a network of nodes. Integrating a technique called gradient tracking in decentralized stochastic gradient descent, we show that the resulting algorithm, GT-DSGD, enj oys certain desirable characteristics towards minimizing a sum of smooth non-convex functions. In particular, for general smooth non-convex functions, we establish non-asymptotic characterizations of GT-DSGD and derive the conditions under which it achieves network-independent performances that match the centralized minibatch SGD. In contrast, the existing results suggest that GT-DSGD is always network-dependent and is therefore strictly worse than the centralized minibatch SGD. When the global non-convex function additionally satisfies the Polyak-Lojasiewics (PL) condition, we establish the linear convergence of GT-DSGD up to a steady-state error with appropriate constant step-sizes. Moreover, under stochastic approximation step-sizes, we establish, for the first time, the optimal global sublinear convergence rate on almost every sample path, in addition to the asymptotically optimal sublinear rate in expectation. Since strongly convex functions are a special case of the functions satisfying the PL condition, our results are not only immediately applicable but also improve the currently known best convergence rates and their dependence on problem parameters.
We study decentralized non-convex finite-sum minimization problems described over a network of nodes, where each node possesses a local batch of data samples. In this context, we analyze a single-timescale randomized incremental gradient method, call ed GT-SAGA. GT-SAGA is computationally efficient as it evaluates one component gradient per node per iteration and achieves provably fast and robust performance by leveraging node-level variance reduction and network-level gradient tracking. For general smooth non-convex problems, we show the almost sure and mean-squared convergence of GT-SAGA to a first-order stationary point and further describe regimes of practical significance where it outperforms the existing approaches and achieves a network topology-independent iteration complexity respectively. When the global function satisfies the Polyak-Lojaciewisz condition, we show that GT-SAGA exhibits linear convergence to an optimal solution in expectation and describe regimes of practical interest where the performance is network topology-independent and improves upon the existing methods. Numerical experiments are included to highlight the main convergence aspects of GT-SAGA in non-convex settings.
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potenti ally non-convex objective function. The objective function is assumed to be the sum of local objective functions available at each WN, with each node having access to only the stochastic samples of its local objective function. In contrast to the existing approaches, we employ a momentum based single loop distributed algorithm which eliminates the need of computing large batch size gradients to achieve variance reduction. We propose two algorithms one with adaptive and the other with non-adaptive learning rates. We show that the proposed algorithms achieve the optimal computational complexity while attaining linear speedup with the number of WNs. Specifically, the algorithms reach an $epsilon$-stationary point $x_a$ with $mathbb{E}| abla f(x_a) | leq tilde{O}(K^{-1/3}T^{-1/2} + K^{-1/3}T^{-1/3})$ in $T$ iterations, thereby requiring $tilde{O}(K^{-1} epsilon^{-3})$ gradient computations at each WN. Moreover, our approach does not assume identical data distributions across WNs making the approach general enough for federated learning applications.
This paper considers decentralized stochastic optimization over a network of $n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an $epsilon$-accurate first-order stationary poin t of the sum of the local costs. We focus on an online setting, where each node accesses its local cost only by means of a stochastic first-order oracle that returns a noisy version of the exact gradient. In this context, we propose a novel single-loop decentralized hybrid variance-reduced stochastic gradient method, called GT-HSGD, that outperforms the existing approaches in terms of both the oracle complexity and practical implementation. The GT-HSGD algorithm implements specialized local hybrid stochastic gradient estimators that are fused over the network to track the global gradient. Remarkably, GT-HSGD achieves a network topology-independent oracle complexity of $O(n^{-1}epsilon^{-3})$ when the required error tolerance $epsilon$ is small enough, leading to a linear speedup with respect to the centralized optimal online variance-reduced approaches that operate on a single node. Numerical experiments are provided to illustrate our main technical results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا