ﻻ يوجد ملخص باللغة العربية
Author stylized rewriting is the task of rewriting an input text in a particular authors style. Recent works in this area have leveraged Transformer-based language models in a denoising autoencoder setup to generate author stylized text without relying on a parallel corpus of data. However, these approaches are limited by the lack of explicit control of target attributes and being entirely data-driven. In this paper, we propose a Director-Generator framework to rewrite content in the target authors style, specifically focusing on certain target attributes. We show that our proposed framework works well even with a limited-sized target author corpus. Our experiments on corpora consisting of relatively small-sized text authored by three distinct authors show significant improvements upon existing works to rewrite input texts in target authors style. Our quantitative and qualitative analyses further show that our model has better meaning retention and results in more fluent generations.
Given the recent progress in language modeling using Transformer-based neural models and an active interest in generating stylized text, we present an approach to leverage the generalization capabilities of a language model to rewrite an input text i
Designing task-oriented dialogue systems is a challenging research topic, since it needs not only to generate utterances fulfilling user requests but also to guarantee the comprehensibility. Many previous works trained end-to-end (E2E) models with su
Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to gen
Despite the recent advancement in NLP research, cross-lingual transfer for natural language generation is relatively understudied. In this work, we transfer supervision from high resource language (HRL) to multiple low-resource languages (LRLs) for n
Our world is open-ended, non-stationary and constantly evolving; thus what we talk about and how we talk about it changes over time. This inherent dynamic nature of language comes in stark contrast to the current static language modelling paradigm, w