ترغب بنشر مسار تعليمي؟ اضغط هنا

Adapting Language Models for Non-Parallel Author-Stylized Rewriting

401   0   0.0 ( 0 )
 نشر من قبل Gaurav Verma
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given the recent progress in language modeling using Transformer-based neural models and an active interest in generating stylized text, we present an approach to leverage the generalization capabilities of a language model to rewrite an input text in a target authors style. Our proposed approach adapts a pre-trained language model to generate author-stylized text by fine-tuning on the author-specific corpus using a denoising autoencoder (DAE) loss in a cascaded encoder-decoder framework. Optimizing over DAE loss allows our model to learn the nuances of an authors style without relying on parallel data, which has been a severe limitation of the previous related works in this space. To evaluate the efficacy of our approach, we propose a linguistically-motivated framework to quantify stylistic alignment of the generated text to the target author at lexical, syntactic and surface levels. The evaluation framework is both interpretable as it leads to several insights about the model, and self-contained as it does not rely on external classifiers, e.g. sentiment or formality classifiers. Qualitative and quantitative assessment indicates that the proposed approach rewrites the input text with better alignment to the target style while preserving the original content better than state-of-the-art baselines.

قيم البحث

اقرأ أيضاً

Author stylized rewriting is the task of rewriting an input text in a particular authors style. Recent works in this area have leveraged Transformer-based language models in a denoising autoencoder setup to generate author stylized text without relyi ng on a parallel corpus of data. However, these approaches are limited by the lack of explicit control of target attributes and being entirely data-driven. In this paper, we propose a Director-Generator framework to rewrite content in the target authors style, specifically focusing on certain target attributes. We show that our proposed framework works well even with a limited-sized target author corpus. Our experiments on corpora consisting of relatively small-sized text authored by three distinct authors show significant improvements upon existing works to rewrite input texts in target authors style. Our quantitative and qualitative analyses further show that our model has better meaning retention and results in more fluent generations.
Language models are at the heart of numerous works, notably in the text mining and information retrieval communities. These statistical models aim at extracting word distributions, from simple unigram models to recurrent approaches with latent variab les that capture subtle dependencies in texts. However, those models are learned from word sequences only, and authors identities, as well as publication dates, are seldom considered. We propose a neural model, based on recurrent language modeling, which aims at capturing language diffusion tendencies in author communities through time. By conditioning language models with author and temporal vector states, we are able to leverage the latent dependencies between the text contexts. This allows us to beat several temporal and non-temporal language baselines on two real-world corpora, and to learn meaningful author representations that vary through time.
118 - Boliang Zhang , Ajay Nagesh , 2020
Web-crawled data provides a good source of parallel corpora for training machine translation models. It is automatically obtained, but extremely noisy, and recent work shows that neural machine translation systems are more sensitive to noise than tra ditional statistical machine translation methods. In this paper, we propose a novel approach to filter out noisy sentence pairs from web-crawled corpora via pre-trained language models. We measure sentence parallelism by leveraging the multilingual capability of BERT and use the Generative Pre-training (GPT) language model as a domain filter to balance data domains. We evaluate the proposed method on the WMT 2018 Parallel Corpus Filtering shared task, and on our own web-crawled Japanese-Chinese parallel corpus. Our method significantly outperforms baselines and achieves a new state-of-the-art. In an unsupervised setting, our method achieves comparable performance to the top-1 supervised method. We also evaluate on a web-crawled Japanese-Chinese parallel corpus that we make publicly available.
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing ta sks. In this paper, we present results using fine-tuned GPT, GPT-2, and their combination for automatic speech recognition (ASR). Unlike unidirectional LM GPT and GPT-2, BERT is bidirectional whose direct product of the output probabilities is no longer a valid language prior probability. A conversion method is proposed to compute the correct language prior probability based on bidirectional LM outputs in a mathematically exact way. Experimental results on the widely used AMI and Switchboard ASR tasks showed that the combination of the fine-tuned GPT and GPT-2 outperformed the combination of three neural LMs with different architectures trained from scratch on the in-domain text by up to a 12% relative word error rate reduction (WERR). Furthermore, the proposed conversion for language prior probabilities enables BERT to receive an extra 3% relative WERR, and the combination of BERT, GPT and GPT-2 results in further improvements.
Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained models embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERTs and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا