ترغب بنشر مسار تعليمي؟ اضغط هنا

CompGuessWhat?!: A Multi-task Evaluation Framework for Grounded Language Learning

185   0   0.0 ( 0 )
 نشر من قبل Alessandro Suglia
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Approaches to Grounded Language Learning typically focus on a single task-based final performance measure that may not depend on desirable properties of the learned hidden representations, such as their ability to predict salient attributes or to generalise to unseen situations. To remedy this, we present GROLLA, an evaluation framework for Grounded Language Learning with Attributes with three sub-tasks: 1) Goal-oriented evaluation; 2) Object attribute prediction evaluation; and 3) Zero-shot evaluation. We also propose a new dataset CompGuessWhat?! as an instance of this framework for evaluating the quality of learned neural representations, in particular concerning attribute grounding. To this end, we extend the original GuessWhat?! dataset by including a semantic layer on top of the perceptual one. Specifically, we enrich the VisualGenome scene graphs associated with the GuessWhat?! images with abstract and situated attributes. By using diagnostic classifiers, we show that current models learn representations that are not expressive enough to encode object attributes (average F1 of 44.27). In addition, they do not learn strategies nor representations that are robust enough to perform well when novel scenes or objects are involved in gameplay (zero-shot best accuracy 50.06%).

قيم البحث

اقرأ أيضاً

End-to-end automatic speech recognition (ASR) systems are increasingly popular due to their relative architectural simplicity and competitive performance. However, even though the average accuracy of these systems may be high, the performance on rare content words often lags behind hybrid ASR systems. To address this problem, second-pass rescoring is often applied leveraging upon language modeling. In this paper, we propose a second-pass system with multi-task learning, utilizing semantic targets (such as intent and slot prediction) to improve speech recognition performance. We show that our rescoring model trained with these additional tasks outperforms the baseline rescoring model, trained with only the language modeling task, by 1.4% on a general test and by 2.6% on a rare word test set in terms of word-error-rate relative (WERR). Our best ASR system with multi-task LM shows 4.6% WERR deduction compared with RNN Transducer only ASR baseline for rare words recognition.
Multi-Task Learning (MTL) aims at boosting the overall performance of each individual task by leveraging useful information contained in multiple related tasks. It has shown great success in natural language processing (NLP). Currently, a number of M LT architectures and learning mechanisms have been proposed for various NLP tasks. However, there is no systematic exploration and comparison of different MLT architectures and learning mechanisms for their strong performance in-depth. In this paper, we conduct a thorough examination of typical MTL methods on a broad range of representative NLP tasks. Our primary goal is to understand the merits and demerits of existing MTL methods in NLP tasks, thus devising new hybrid architectures intended to combine their strengths.
Although virtual agents are increasingly situated in environments where natural language is the most effective mode of interaction with humans, these exchanges are rarely used as an opportunity for learning. Leveraging language interactions effective ly requires addressing limitations in the two most common approaches to language grounding: semantic parsers built on top of fixed object categories are precise but inflexible and end-to-end models are maximally expressive, but fickle and opaque. Our goal is to develop a system that balances the strengths of each approach so that users can teach agents new instructions that generalize broadly from a single example. We introduce the idea of neural abstructions: a set of constraints on the inference procedure of a label-conditioned generative model that can affect the meaning of the label in context. Starting from a core programming language that operates over abstructions, users can define increasingly complex mappings from natural language to actions. We show that with this method a user population is able to build a semantic parser for an open-ended house modification task in Minecraft. The semantic parser that results is both flexible and expressive: the percentage of utterances sourced from redefinitions increases steadily over the course of 191 total exchanges, achieving a final value of 28%.
Neural conversation models have shown great potentials towards generating fluent and informative responses by introducing external background knowledge. Nevertheless, it is laborious to construct such knowledge-grounded dialogues, and existing models usually perform poorly when transfer to new domains with limited training samples. Therefore, building a knowledge-grounded dialogue system under the low-resource setting is a still crucial issue. In this paper, we propose a novel three-stage learning framework based on weakly supervised learning which benefits from large scale ungrounded dialogues and unstructured knowledge base. To better cooperate with this framework, we devise a variant of Transformer with decoupled decoder which facilitates the disentangled learning of response generation and knowledge incorporation. Evaluation results on two benchmarks indicate that our approach can outperform other state-of-the-art methods with less training data, and even in zero-resource scenario, our approach still performs well.
We present methods for multi-task learning that take advantage of natural groupings of related tasks. Task groups may be defined along known properties of the tasks, such as task domain or language. Such task groups represent supervised information a t the inter-task level and can be encoded into the model. We investigate two variants of neural network architectures that accomplish this, learning different feature spaces at the levels of individual tasks, task groups, as well as the universe of all tasks: (1) parallel architectures encode each input simultaneously into feature spaces at different levels; (2) serial architectures encode each input successively into feature spaces at different levels in the task hierarchy. We demonstrate the methods on natural language understanding (NLU) tasks, where a grouping of tasks into different task domains leads to improved performance on ATIS, Snips, and a large inhouse dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا