ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Learning for Fast and Reliable Initial Access in AI-Driven 6G mmWave Networks

362   0   0.0 ( 0 )
 نشر من قبل Tugba Erpek
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present DeepIA, a deep neural network (DNN) framework for enabling fast and reliable initial access for AI-driven beyond 5G and 6G millimeter (mmWave) networks. DeepIA reduces the beam sweep time compared to a conventional exhaustive search-based IA process by utilizing only a subset of the available beams. DeepIA maps received signal strengths (RSSs) obtained from a subset of beams to the beam that is best oriented to the receiver. In both line of sight (LoS) and non-line of sight (NLoS) conditions, DeepIA reduces the IA time and outperforms the conventional IAs beam prediction accuracy. We show that the beam prediction accuracy of DeepIA saturates with the number of beams used for IA and depends on the particular selection of the beams. In LoS conditions, the selection of the beams is consequential and improves the accuracy by up to 70%. In NLoS situations, it improves accuracy by up to 35%. We find that, averaging multiple RSS snapshots further reduces the number of beams needed and achieves more than 95% accuracy in both LoS and NLoS conditions. Finally, we evaluate the beam prediction time of DeepIA through embedded hardware implementation and show the improvement over the conventional beam sweeping.



قيم البحث

اقرأ أيضاً

This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need for an exhaustive beam search thereby reducing the beam sweep time in IA. A deep neural network (DNN) is trained to learn the complex mapping from the received signal strengths (RSSs) collected with a reduced number of beams to the optimal spatial beam of the receiver (among a larger set of beams). In test time, DeepIA measures RSSs only from a small number of beams and runs the DNN to predict the best beam for IA. We show that DeepIA reduces the IA time by sweeping fewer beams and significantly outperforms the conventional IAs beam prediction accuracy in both line of sight (LoS) and non-line of sight (NLoS) mmWave channel conditions.
Millimeter-wave (mmWave) communications rely on directional transmissions to overcome severe path loss. Nevertheless, the use of narrow beams complicates the initial access procedure and increase the latency as the transmitter and receiver beams shou ld be aligned for a proper link establishment. In this paper, we investigate the feasibility of random beamforming for the cell-search phase of initial access. We develop a stochastic geometry framework to analyze the performance in terms of detection failure probability and expected latency of initial access as well as total data transmission. Meanwhile, we compare our scheme with the widely used exhaustive search and iterative search schemes, in both control plane and data plane. Our numerical results show that, compared to the other two schemes, random beamforming can substantially reduce the latency of initial access with comparable failure probability in dense networks. We show that the gain of the random beamforming is more prominent in light traffics and low-latency services. Our work demonstrates that developing complex cell-discovery algorithms may be unnecessary in dense mmWave networks and thus shed new lights on mmWave network design.
Network softwarization has revolutionized the architecture of cellular wireless networks. State-of-the-art container based virtual radio access networks (vRAN) provide enormous flexibility and reduced life cycle management costs, but they also come w ith prohibitive energy consumption. We argue that for future AI-native wireless networks to be flexible and energy efficient, there is a need for a new abstraction in network softwarization that caters for neural network type of workloads and allows a large degree of service composability. In this paper we present the NeuroRAN architecture, which leverages stateful function as a user facing execution model, and is complemented with virtualized resources and decentralized resource management. We show that neural network based implementations of common transceiver functional blocks fit the proposed architecture, and we discuss key research challenges related to compilation and code generation, resource management, reliability and security.
164 - Wen Wu , Conghao Zhou , Mushu Li 2021
With the global roll-out of the fifth generation (5G) networks, it is necessary to look beyond 5G and envision the sixth generation (6G) networks. The 6G networks are expected to have space-air-ground integrated networking, advanced network virtualiz ation, and ubiquitous intelligence. This article proposes an artificial intelligence (AI)-native network slicing architecture for 6G networks to facilitate intelligent network management and support emerging AI services. AI is built in the proposed network slicing architecture to enable the synergy of AI and network slicing. AI solutions are investigated for the entire lifecycle of network slicing to facilitate intelligent network management, i.e., AI for slicing. Furthermore, network slicing approaches are discussed to support emerging AI services by constructing slice instances and performing efficient resource management, i.e., slicing for AI. Finally, a case study is presented, followed by a discussion of open research issues that are essential for AI-native network slicing in 6G.
In intelligent transportation systems (ITS), vehicles are expected to feature with advanced applications and services which demand ultra-high data rates and low-latency communications. For that, the millimeter wave (mmWave) communication has been eme rging as a very promising solution. However, incorporating the mmWave into ITS is particularly challenging due to the high mobility of vehicles and the inherent sensitivity of mmWave beams to dynamic blockages. This article addresses these problems by developing an optimal beam association framework for mmWave vehicular networks under high mobility. Specifically, we use the semi-Markov decision process to capture the dynamics and uncertainty of the environment. The Q-learning algorithm is then often used to find the optimal policy. However, Q-learning is notorious for its slow-convergence. Instead of adopting deep reinforcement learning structures (like most works in the literature), we leverage the fact that there are usually multiple vehicles on the road to speed up the learning process. To that end, we develop a lightweight yet very effective parallel Q-learning algorithm to quickly obtain the optimal policy by simultaneously learning from various vehicles. Extensive simulations demonstrate that our proposed solution can increase the data rate by 47% and reduce the disconnection probability by 29% compared to other solutions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا