ﻻ يوجد ملخص باللغة العربية
Millimeter-wave (mmWave) communications rely on directional transmissions to overcome severe path loss. Nevertheless, the use of narrow beams complicates the initial access procedure and increase the latency as the transmitter and receiver beams should be aligned for a proper link establishment. In this paper, we investigate the feasibility of random beamforming for the cell-search phase of initial access. We develop a stochastic geometry framework to analyze the performance in terms of detection failure probability and expected latency of initial access as well as total data transmission. Meanwhile, we compare our scheme with the widely used exhaustive search and iterative search schemes, in both control plane and data plane. Our numerical results show that, compared to the other two schemes, random beamforming can substantially reduce the latency of initial access with comparable failure probability in dense networks. We show that the gain of the random beamforming is more prominent in light traffics and low-latency services. Our work demonstrates that developing complex cell-discovery algorithms may be unnecessary in dense mmWave networks and thus shed new lights on mmWave network design.
We present DeepIA, a deep neural network (DNN) framework for enabling fast and reliable initial access for AI-driven beyond 5G and 6G millimeter (mmWave) networks. DeepIA reduces the beam sweep time compared to a conventional exhaustive search-based
In this paper, we investigate the combination of non-orthogonal multiple access and millimeter-Wave communications (mmWave-NOMA). A downlink cellular system is considered, where an analog phased array is equipped at both the base station and users. A
Future millimeter-wave (mmWave) systems, 5G cellular or WiFi, must rely on highly directional links to overcome severe pathloss in these frequency bands. Establishing such links requires the mutual discovery of the transmitter and the receiver %in th
This paper presents DeepIA, a deep learning solution for faster and more accurate initial access (IA) in 5G millimeter wave (mmWave) networks when compared to conventional IA. By utilizing a subset of beams in the IA process, DeepIA removes the need
This paper considers a class of multi-channel random access algorithms, where contending devices may send multiple copies (replicas) of their messages to the central base station. We first develop a hypothetical algorithm that delivers a lower estima