ﻻ يوجد ملخص باللغة العربية
Hero drafting is essential in MOBA game playing as it builds the team of each side and directly affects the match outcome. State-of-the-art drafting methods fail to consider: 1) drafting efficiency when the hero pool is expanded; 2) the multi-round nature of a MOBA 5v5 match series, i.e., two teams play best-of-N and the same hero is only allowed to be drafted once throughout the series. In this paper, we formulate the drafting process as a multi-round combinatorial game and propose a novel drafting algorithm based on neural networks and Monte-Carlo tree search, named JueWuDraft. Specifically, we design a long-term value estimation mechanism to handle the best-of-N drafting case. Taking Honor of Kings, one of the most popular MOBA games at present, as a running case, we demonstrate the practicality and effectiveness of JueWuDraft when compared to state-of-the-art drafting methods.
Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reas
Monte Carlo tree search (MCTS) has achieved state-of-the-art results in many domains such as Go and Atari games when combining with deep neural networks (DNNs). When more simulations are executed, MCTS can achieve higher performance but also requires
Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of gr
Circuit routing is a fundamental problem in designing electronic systems such as integrated circuits (ICs) and printed circuit boards (PCBs) which form the hardware of electronics and computers. Like finding paths between pairs of locations, circuit
Scheduling in the presence of uncertainty is an area of interest in artificial intelligence due to the large number of applications. We study the problem of dynamic controllability (DC) of disjunctive temporal networks with uncertainty (DTNU), which