ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-based Dynamic Controllability of Disjunctive Temporal Networks with Uncertainty: A Tree Search Approach with Graph Neural Network Guidance

123   0   0.0 ( 0 )
 نشر من قبل Kevin Osanlou Mr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scheduling in the presence of uncertainty is an area of interest in artificial intelligence due to the large number of applications. We study the problem of dynamic controllability (DC) of disjunctive temporal networks with uncertainty (DTNU), which seeks a strategy to satisfy all constraints in response to uncontrollable action durations. We introduce a more restricted, stronger form of controllability than DC for DTNUs, time-based dynamic controllability (TDC), and present a tree search approach to determine whether or not a DTNU is TDC. Moreover, we leverage the learning capability of a message passing neural network (MPNN) as a heuristic for tree search guidance. Finally, we conduct experiments for which the tree search shows superior results to state-of-the-art timed-game automata (TGA) based approaches. We observe that using an MPNN for tree search guidance leads to a significant increase in solving performance and scalability to harder DTNU problems.

قيم البحث

اقرأ أيضاً

Planning for Autonomous Unmanned Ground Vehicles (AUGV) is still a challenge, especially in difficult, off-road, critical situations. Automatic planning can be used to reach mission objectives, to perform navigation or maneuvers. Most of the time, th e problem consists in finding a path from a source to a destination, while satisfying some operational constraints. In a graph without negative cycles, the computation of the single-pair shortest path from a start node to an end node is solved in polynomial time. Additional constraints on the solution path can however make the problem harder to solve. This becomes the case when we need the path to pass through a few mandatory nodes without requiring a specific order of visit. The complexity grows exponentially with the number of mandatory nodes to visit. In this paper, we focus on shortest path search with mandatory nodes on a given connected graph. We propose a hybrid model that combines a constraint-based solver and a graph convolutional neural network to improve search performance. Promising results are obtained on realistic scenarios.
Learning-based methods are growing prominence for planning purposes. However, there are very few approaches for learning-assisted constrained path-planning on graphs, while there are multiple downstream practical applications. This is the case for co nstrained path-planning for Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue applications. In off-road environments, the AUGV must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed on-line. We propose a hybrid solving planner that combines machine learning models and an optimal solver. More specifically, a graph convolutional network (GCN) is used to assist a branch and bound (B&B) algorithm in handling the constraints. We conduct experiments on realistic scenarios and show that GCN support enables substantial speedup and smoother scaling to harder problems.
Extracting spatial-temporal knowledge from data is useful in many applications. It is important that the obtained knowledge is human-interpretable and amenable to formal analysis. In this paper, we propose a method that trains neural networks to lear n spatial-temporal properties in the form of weighted graph-based signal temporal logic (wGSTL) formulas. For learning wGSTL formulas, we introduce a flexible wGSTL formula structure in which the users preference can be applied in the inferred wGSTL formulas. In the proposed framework, each neuron of the neural networks corresponds to a subformula in a flexible wGSTL formula structure. We initially train a neural network to learn the wGSTL operators and then train a second neural network to learn the parameters in a flexible wGSTL formula structure. We use a COVID-19 dataset and a rain prediction dataset to evaluate the performance of the proposed framework and algorithms. We compare the performance of the proposed framework with three baseline classification methods including K-nearest neighbors, decision trees, and artificial neural networks. The classification accuracy obtained by the proposed framework is comparable with the baseline classification methods.
Monte Carlo tree search (MCTS) is extremely popular in computer Go which determines each action by enormous simulations in a broad and deep search tree. However, human experts select most actions by pattern analysis and careful evaluation rather than brute search of millions of future nteractions. In this paper, we propose a computer Go system that follows experts way of thinking and playing. Our system consists of two parts. The first part is a novel deep alternative neural network (DANN) used to generate candidates of next move. Compared with existing deep convolutional neural network (DCNN), DANN inserts recurrent layer after each convolutional layer and stacks them in an alternative manner. We show such setting can preserve more contexts of local features and its evolutions which are beneficial for move prediction. The second part is a long-term evaluation (LTE) module used to provide a reliable evaluation of candidates rather than a single probability from move predictor. This is consistent with human experts nature of playing since they can foresee tens of steps to give an accurate estimation of candidates. In our system, for each candidate, LTE calculates a cumulative reward after several future interactions when local variations are settled. Combining criteria from the two parts, our system determines the optimal choice of next move. For more comprehensive experiments, we introduce a new professional Go dataset (PGD), consisting of 253233 professional records. Experiments on GoGoD and PGD datasets show the DANN can substantially improve performance of move prediction over pure DCNN. When combining LTE, our system outperforms most relevant approaches and open engines based on MCTS.
Markov Logic Networks (MLNs), which elegantly combine logic rules and probabilistic graphical models, can be used to address many knowledge graph problems. However, inference in MLN is computationally intensive, making the industrial-scale applicatio n of MLN very difficult. In recent years, graph neural networks (GNNs) have emerged as efficient and effective tools for large-scale graph problems. Nevertheless, GNNs do not explicitly incorporate prior logic rules into the models, and may require many labeled examples for a target task. In this paper, we explore the combination of MLNs and GNNs, and use graph neural networks for variational inference in MLN. We propose a GNN variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model. Our extensive experiments on several benchmark datasets demonstrate that ExpressGNN leads to effective and efficient probabilistic logic reasoning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا