ﻻ يوجد ملخص باللغة العربية
In general, the typical approach to discriminate antibunching, bunching or superbunching categories make use of calculating the second-order coherence function ${g^{(2)}}(tau )$ of light. Although the classical light sources correspond to the specific degree of second-order coherence ${g^{(2)}}(0)$, it does not alone constitute a distinguishable metric to characterize and determine light sources. Here we propose a new mechanism to directly classify and generate antibunching, bunching or superbunching categories of light, as well as the classical light sources such as thermal and coherent light, by Gamma fitting according to only one characteristic parameter $alpha$ or $beta$. Experimental verification of beams from four-wave mixing process is in agreement with the presented mechanism, and the in fluence of temperature $T$ and laser detuning $Delta$ on the measured results are investigated. The proposal demonstrates the potential of classifying and identifying light with different nature, and the most importantly, provides a convenient and simple method to generate light sources meeting various application requirements according to the presented rules. Most notably, the bunching and superbunching are distinguishable in super-Poissonian statistics using our mechanism.
Analyses based on quantum metrology have shown that the ability to localize the positions of two incoherent point sources can be significantly enhanced through the use of mode sorting. Here we theoretically and experimentally investigate the effect o
Spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information. Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolut
Deterministic nanoassembly may enable unique integrated on-chip quantum photonic devices. Such integration requires a careful large-scale selection of nanoscale building blocks such as solid-state single-photon emitters by the means of optical charac
Thin film lithium niobate (LN) has recently emerged as a playground for chip-scale nonlinear optics and leads to highly efficient frequency
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t