ﻻ يوجد ملخص باللغة العربية
Analyses based on quantum metrology have shown that the ability to localize the positions of two incoherent point sources can be significantly enhanced through the use of mode sorting. Here we theoretically and experimentally investigate the effect of partial coherence on the sub-diffraction limit localization of two sources based on parity sorting. With the prior information of a negative and real-valued degree of coherence, higher Fisher information is obtained than that for the incoherent case. Our results pave the way to clarifying the role of coherence in quantum limited metrology.
In general, the typical approach to discriminate antibunching, bunching or superbunching categories make use of calculating the second-order coherence function ${g^{(2)}}(tau )$ of light. Although the classical light sources correspond to the specifi
We investigate the Goos-H{a}nchen (GH) shifts of partially coherent fields (PCFs) by using the theory of coherence. We derive a formal expression for the GH shifts of PCFs in terms of Mercers expansion, and then clearly demonstrate the dependence of
Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexpl
We propose a wavelength-mode sorter realized by multi-plane light conversion (MPLC). For the first time, to our best knowledge, wavelengths and spatial modes can be sorted simultaneously. We first demonstrate pure wavelength sorting by a series of ph
Manipulating the excitation of resonant electric and magnetic multipole moments in structured dielectric media has unlocked many sophisticated electromagnetic functionalities. This article demonstrates the experimental realization of a broadband Huyg