ﻻ يوجد ملخص باللغة العربية
Spatial modes of light provide a high-dimensional space that can be used to encode both classical and quantum information. Current approaches for dynamically generating and measuring these modes are slow, due to the need to reconfigure a high-resolution phase mask such as a spatial light modulator or digital micromirror device. The process of updating the spatial mode of light can be greatly accelerated by multiplexing a set of static phase masks with a fast, image-preserving optical switch, such as an acousto-optic modulator (AOM). We experimentally realize this approach, using a double-pass AOM to generate one of five orbital angular momentum states with a switching rate of up to 500 kHz. We then apply this system to perform fast quantum state tomography of spatial modes of light in a 2-dimensional Hilbert space, by projecting the unknown state onto six spatial modes comprising three mutually unbiased bases. We are able to reconstruct arbitrary states in under 1 ms with an average fidelity of 96.9%.
To achieve a distributed reflectivity measurement along an optical fiber, we develop a simplified cost-effective configuration of optical correlation- (or coherence-) domain reflectometry based on a synthesized optical coherence function by sinusoida
We report the development of a superconducting acousto-optic phase modulator fabricated on a lithium niobate substrate. A titanium-diffused optical waveguide is placed in a surface acoustic wave resonator, where the electrodes for mirrors and an inte
We present a laser beam shaping method using acousto-optic deflection of light and discuss its application to dipole trapping of ultracold atoms. By driving the acousto-optic deflector with multiple frequencies, we generate an array of overlapping di
The model of nonlinear interaction of proper waves of photonic crystal with plane acoustic wave was developed. The formulation of the model is reduced to the eigenvalue problem, which can be solved by computer simulations. By means of the formulae gi
Distinguishing between strings of data or waveforms is at the core of multiple applications in information technologies. In a quantum language the task is to design protocols to differentiate quantum states. Quantum-based technologies promises to go