ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple solutions for some strongly degenerate second order elliptic equations

92   0   0.0 ( 0 )
 نشر من قبل Gaetano Siciliano
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-textrm{div} (a(x) abla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $Omega$ where it is not allowed to be $C^{2}$. By using weighted Sobolev spaces we are still able to find existence of solutions which vanish, in the trace sense, on the set where $a$ vanishes.



قيم البحث

اقرأ أيضاً

We obtain asymptotic mean value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. We study both when the set of coefficients is bounded and unbounded (each case requires different techniques). The families of equations that we consider include well-known operators such as Pucci, Issacs, and $k-$Hessian operators.
114 - Kin Ming Hui , Sunghoon Kim 2016
Let $ngeq 3$, $0le m<frac{n-2}{n}$, $rho_1>0$, $beta>beta_0^{(m)}=frac{mrho_1}{n-2-nm}$, $alpha_m=frac{2beta+rho_1}{1-m}$ and $alpha=2beta+rho_1$. For any $lambda>0$, we prove the uniqueness of radially symmetric solution $v^{(m)}$ of $La(v^m/m)+alph a_m v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$ which satisfies $lim_{|x|to 0}|x|^{frac{alpha_m}{beta}}v^{(m)}(x)=lambda^{-frac{rho_1}{(1-m)beta}}$ and obtain higher order estimates of $v^{(m)}$ near the blow-up point $x=0$. We prove that as $mto 0^+$, $v^{(m)}$ converges uniformly in $C^2(K)$ for any compact subset $K$ of $R^nsetminus{0}$ to the solution $v$ of $Lalog v+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nbs{0}$, which satisfies $lim_{|x|to 0}|x|^{frac{alpha}{beta}}v(x)=lambda^{-frac{rho_1}{beta}}$. We also prove that if the solution $u^{(m)}$ of $u_t=Delta (u^m/m)$, $u>0$, in $(R^nsetminus{0})times (0,T)$ which blows up near ${0}times (0,T)$ at the rate $|x|^{-frac{alpha_m}{beta}}$ satisfies some mild growth condition on $(R^nsetminus{0})times (0,T)$, then as $mto 0^+$, $u^{(m)}$ converges uniformly in $C^{2+theta,1+frac{theta}{2}}(K)$ for some constant $thetain (0,1)$ and any compact subset $K$ of $(R^nsetminus{0})times (0,T)$ to the solution of $u_t=Lalog u$, $u>0$, in $(R^nsetminus{0})times (0,T)$. As a consequence of the proof we obtain existence of a unique radially symmetric solution $v^{(0)}$ of $La log v+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$, which satisfies $lim_{|x|to 0}|x|^{frac{alpha}{beta}}v(x)=lambda^{-frac{rho_1}{beta}}$.
197 - Steve Hofmann , Seick Kim 2007
We establish existence and pointwise estimates of fundamental solutions and Greens matrices for divergence form, second order strongly elliptic systems in a domain $Omega subseteq mathbb{R}^n$, $n geq 3$, under the assumption that solutions of the sy stem satisfy De Giorgi-Nash type local H{o}lder continuity estimates. In particular, our results apply to perturbations of diagonal systems, and thus especially to complex perturbations of a single real equation.
We use blow up analysis for local integral equations to prove compactness of solutions to higher order critical elliptic equations provided the potentials only have non-degenerate zeros. Secondly, corresponding to Schoens Weyl tensor vanishing conjec ture for the Yamabe equation on manifolds, we establish a Laplacian vanishing rate of the potentials at blow up points of solutions.
162 - N.V. Krylov 2008
The solvability in $W^{2}_{p}(bR^{d})$ spaces is proved for second-order elliptic equations with coefficients which are measurable in one direction and VMO in the orthogonal directions in each small ball with the direction depending on the ball. This generalizes to a very large extent the case of equations with continuous or VMO coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا