ترغب بنشر مسار تعليمي؟ اضغط هنا

Singular limits and properties of solutions of some degenerate elliptic and parabolic equations

115   0   0.0 ( 0 )
 نشر من قبل Sunghoon Kim
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $ngeq 3$, $0le m<frac{n-2}{n}$, $rho_1>0$, $beta>beta_0^{(m)}=frac{mrho_1}{n-2-nm}$, $alpha_m=frac{2beta+rho_1}{1-m}$ and $alpha=2beta+rho_1$. For any $lambda>0$, we prove the uniqueness of radially symmetric solution $v^{(m)}$ of $La(v^m/m)+alpha_m v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$ which satisfies $lim_{|x|to 0}|x|^{frac{alpha_m}{beta}}v^{(m)}(x)=lambda^{-frac{rho_1}{(1-m)beta}}$ and obtain higher order estimates of $v^{(m)}$ near the blow-up point $x=0$. We prove that as $mto 0^+$, $v^{(m)}$ converges uniformly in $C^2(K)$ for any compact subset $K$ of $R^nsetminus{0}$ to the solution $v$ of $Lalog v+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nbs{0}$, which satisfies $lim_{|x|to 0}|x|^{frac{alpha}{beta}}v(x)=lambda^{-frac{rho_1}{beta}}$. We also prove that if the solution $u^{(m)}$ of $u_t=Delta (u^m/m)$, $u>0$, in $(R^nsetminus{0})times (0,T)$ which blows up near ${0}times (0,T)$ at the rate $|x|^{-frac{alpha_m}{beta}}$ satisfies some mild growth condition on $(R^nsetminus{0})times (0,T)$, then as $mto 0^+$, $u^{(m)}$ converges uniformly in $C^{2+theta,1+frac{theta}{2}}(K)$ for some constant $thetain (0,1)$ and any compact subset $K$ of $(R^nsetminus{0})times (0,T)$ to the solution of $u_t=Lalog u$, $u>0$, in $(R^nsetminus{0})times (0,T)$. As a consequence of the proof we obtain existence of a unique radially symmetric solution $v^{(0)}$ of $La log v+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$, which satisfies $lim_{|x|to 0}|x|^{frac{alpha}{beta}}v(x)=lambda^{-frac{rho_1}{beta}}$.

قيم البحث

اقرأ أيضاً

105 - Hongjie Dong , Tuoc Phan 2020
We study both divergence and non-divergence form parabolic and elliptic equations in the half space ${x_d>0}$ whose coefficients are the product of $x_d^alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $alpha in (- 1, infty)$. As such, the coefficients are singular or degenerate near the boundary of the half space. For equations with the conormal or Neumann boundary condition, we prove the existence, uniqueness, and regularity of solutions in weighted Sobolev spaces and mixed-norm weighted Sobolev spaces when the coefficients are only measurable in the $x_d$ direction and have small mean oscillation in the other directions in small cylinders. Our results are new even in the special case when the coefficients are constants, and they are reduced to the classical results when $alpha =0$
348 - Hongjie Dong , Tuoc Phan 2020
We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $mathbb{R}^d_+$, where the coefficients are the product of $x_d^alpha, alpha in (-infty, 1),$ and a bounded uniformly elliptic matrix of coeffic ients. Thus, the coefficients are singular or degenerate near the boundary ${x_d =0}$ and they may not locally integrable. The novelty of the work is that we find proper weights under which the existence, uniqueness, and regularity of solutions in Sobolev spaces are established. These results appear to be the first of their kind and are new even if the coefficients are constant. They are also readily extended to systems of equations.
We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-textrm{div} (a(x) abla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $Omega$ wher e it is not allowed to be $C^{2}$. By using weighted Sobolev spaces we are still able to find existence of solutions which vanish, in the trace sense, on the set where $a$ vanishes.
We study the local behavior of bounded local weak solutions to a class of anisotropic singular equations that involves both non-degenerate and singular operators. Throughout a parabolic approach to expansion of positivity we obtain the interior Holde r continuity, and some integral and pointwise Harnack inequalities.
The aim of this paper is twofold. The first is to study the asymptotics of a parabolically scaled, continuous and space-time stationary in time version of the well-known Funaki-Spohn model in Statistical Physics. After a change of unknowns requiring the existence of a space-time stationary eternal solution of a stochastically perturbed heat equation, the problem transforms to the qualitative homogenization of a uniformly elliptic, space-time stationary, divergence form, nonlinear partial differential equation, the study of which is the second aim of the paper. An important step is the construction of correctors with the appropriate behavior at infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا