ﻻ يوجد ملخص باللغة العربية
We obtain asymptotic mean value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and supremum, of linear operators. We study both when the set of coefficients is bounded and unbounded (each case requires different techniques). The families of equations that we consider include well-known operators such as Pucci, Issacs, and $k-$Hessian operators.
We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-textrm{div} (a(x) abla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $Omega$ wher
In this paper we obtain the precise description of the asymptotic behavior of the solution $u$ of $$ partial_t u+(-Delta)^{frac{theta}{2}}u=0quadmbox{in}quad{bf R}^Ntimes(0,infty), qquad u(x,0)=varphi(x)quadmbox{in}quad{bf R}^N, $$ where $0<theta<2$
This paper concerns about the weak unique continuation property of solutions of a general system of differential equation/inequality with a second order strongly elliptic system as its leading part. We put not only some natural assumption which calle
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge-Amp`ere equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of vi
We use blow up analysis for local integral equations to prove compactness of solutions to higher order critical elliptic equations provided the potentials only have non-degenerate zeros. Secondly, corresponding to Schoens Weyl tensor vanishing conjec