ﻻ يوجد ملخص باللغة العربية
We use blow up analysis for local integral equations to prove compactness of solutions to higher order critical elliptic equations provided the potentials only have non-degenerate zeros. Secondly, corresponding to Schoens Weyl tensor vanishing conjecture for the Yamabe equation on manifolds, we establish a Laplacian vanishing rate of the potentials at blow up points of solutions.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el
We consider a boundary value problem in a bounded domain involving a degenerate operator of the form $$L(u)=-textrm{div} (a(x) abla u)$$ and a suitable nonlinearity $f$. The function $a$ vanishes on smooth 1-codimensional submanifolds of $Omega$ wher
We obtain asymptotic mean value formulas for solutions of second-order elliptic equations. Our approach is very flexible and allows us to consider several families of operators obtained as an infimum, a supremum, or a combination of both infimum and
We prove nonexistence of nontrivial, possibly sign changing, stable solutions to a class of quasilinear elliptic equations with a potential on Riemannian manifolds, under suitable weighted volume growth conditions on geodesic balls.
Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector est