ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Object Keypoint Learning using Local Spatial Predictability

68   0   0.0 ( 0 )
 نشر من قبل Anand Gopalakrishnan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose PermaKey, a novel approach to representation learning based on object keypoints. It leverages the predictability of local image regions from spatial neighborhoods to identify salient regions that correspond to object parts, which are then converted to keypoints. Unlike prior approaches, it utilizes predictability to discover object keypoints, an intrinsic property of objects. This ensures that it does not overly bias keypoints to focus on characteristics that are not unique to objects, such as movement, shape, colour etc. We demonstrate the efficacy of PermaKey on Atari where it learns keypoints corresponding to the most salient object parts and is robust to certain visual distractors. Further, on downstream RL tasks in the Atari domain we demonstrate how agents equipped with our keypoints outperform those using competing alternatives, even on challenging environments with moving backgrounds or distractor objects.



قيم البحث

اقرأ أيضاً

Keypoint detection is an essential component for the object registration and alignment. However, previous works mainly focused on how to register keypoints under arbitrary rigid transformations. Differently, in this work, we reckon keypoints under an information compression scheme to represent the whole object. Based on this, we propose UKPGAN, an unsupervised 3D keypoint detector where keypoints are detected so that they could reconstruct the original object shape. Two modules: GAN-based keypoint sparsity control and salient information distillation modules are proposed to locate those important keypoints. Extensive experiments show that our keypoints preserve the semantic information of objects and align well with human annotated part and keypoint labels. Furthermore, we show that UKPGAN can be applied to either rigid objects or non-rigid SMPL human bodies under arbitrary pose deformations. As a keypoint detector, our model is stable under both rigid and non-rigid transformations, with local reference frame estimation. Our code is available on https://github.com/qq456cvb/UKPGAN.
Physical processes, camera movement, and unpredictable environmental conditions like the presence of dust can induce noise and artifacts in video feeds. We observe that popular unsupervised MOT methods are dependent on noise-free inputs. We show that the addition of a small amount of artificial random noise causes a sharp degradation in model performance on benchmark metrics. We resolve this problem by introducing a robust unsupervised multi-object tracking (MOT) model: AttU-Net. The proposed single-head attention model helps limit the negative impact of noise by learning visual representations at different segment scales. AttU-Net shows better unsupervised MOT tracking performance over variational inference-based state-of-the-art baselines. We evaluate our method in the MNIST-MOT and the Atari game video benchmark. We also provide two extended video datasets: ``Kuzushiji-MNIST MOT which consists of moving Japanese characters and ``Fashion-MNIST MOT to validate the effectiveness of the MOT models.
Unsupervised image clustering methods often introduce alternative objectives to indirectly train the model and are subject to faulty predictions and overconfident results. To overcome these challenges, the current research proposes an innovative mode l RUC that is inspired by robust learning. RUCs novelty is at utilizing pseudo-labels of existing image clustering models as a noisy dataset that may include misclassified samples. Its retraining process can revise misaligned knowledge and alleviate the overconfidence problem in predictions. The models flexible structure makes it possible to be used as an add-on module to other clustering methods and helps them achieve better performance on multiple datasets. Extensive experiments show that the proposed model can adjust the model confidence with better calibration and gain additional robustness against adversarial noise.
Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievem ents in UDA resort to learning domain-invariant features. Intuitively, the hope is that a good feature representation, together with the hypothesis learned from the source domain, can generalize well to the target domain. However, the learning processes of domain-invariant features and source hypothesis inevitably involve domain-specific information that would degrade the generalizability of UDA models on the target domain. In this paper, motivated by the lottery ticket hypothesis that only partial parameters are essential for generalization, we find that only partial parameters are essential for learning domain-invariant information and generalizing well in UDA. Such parameters are termed transferable parameters. In contrast, the other parameters tend to fit domain-specific details and often fail to generalize, which we term as untransferable parameters. Driven by this insight, we propose Transferable Parameter Learning (TransPar) to reduce the side effect brought by domain-specific information in the learning process and thus enhance the memorization of domain-invariant information. Specifically, according to the distribution discrepancy degree, we divide all parameters into transferable and untransferable ones in each training iteration. We then perform separate updates rules for the two types of parameters. Extensive experiments on image classification and regression tasks (keypoint detection) show that TransPar outperforms prior arts by non-trivial margins. Moreover, experiments demonstrate that TransPar can be integrated into the most popular deep UDA networks and be easily extended to handle any data distribution shift scenarios.
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visua l patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named CornerNet. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of 47.0%, which outperforms all existing one-stage detectors by at least 4.9%. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/Duankaiwen/CenterNet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا