ترغب بنشر مسار تعليمي؟ اضغط هنا

Legal Document Classification: An Application to Law Area Prediction of Petitions to Public Prosecution Service

70   0   0.0 ( 0 )
 نشر من قبل Mariana Noguti
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, there has been an increased interest in the application of Natural Language Processing (NLP) to legal documents. The use of convolutional and recurrent neural networks along with word embedding techniques have presented promising results when applied to textual classification problems, such as sentiment analysis and topic segmentation of documents. This paper proposes the use of NLP techniques for textual classification, with the purpose of categorizing the descriptions of the services provided by the Public Prosecutors Office of the State of Parana to the population in one of the areas of law covered by the institution. Our main goal is to automate the process of assigning petitions to their respective areas of law, with a consequent reduction in costs and time associated with such process while allowing the allocation of human resources to more complex tasks. In this paper, we compare different approaches to word representations in the aforementioned task: including document-term matrices and a few different word embeddings. With regards to the classification models, we evaluated three different families: linear models, boosted trees and neural networks. The best results were obtained with a combination of Word2Vec trained on a domain-specific corpus and a Recurrent Neural Network (RNN) architecture (more specifically, LSTM), leading to an accuracy of 90% and F1-Score of 85% in the classification of eighteen categories (law areas).



قيم البحث

اقرأ أيضاً

In this paper we propose a new document classification method, bridging discrepancies (so-called semantic gap) between the training set and the application sets of textual data. We demonstrate its superiority over classical text classification approa ches, including traditional classifier ensembles. The method consists in combining a document categorization technique with a single classifier or a classifier ensemble (SEMCOM algorithm - Committee with Semantic Categorizer).
Domain specific information retrieval process has been a prominent and ongoing research in the field of natural language processing. Many researchers have incorporated different techniques to overcome the technical and domain specificity and provide a mature model for various domains of interest. The main bottleneck in these studies is the heavy coupling of domain experts, that makes the entire process to be time consuming and cumbersome. In this study, we have developed three novel models which are compared against a golden standard generated via the on line repositories provided, specifically for the legal domain. The three different models incorporated vector space representations of the legal domain, where document vector generation was done in two different mechanisms and as an ensemble of the above two. This study contains the research being carried out in the process of representing legal case documents into different vector spaces, whilst incorporating semantic word measures and natural language processing techniques. The ensemble model built in this study, shows a significantly higher accuracy level, which indeed proves the need for incorporation of domain specific semantic similarity measures into the information retrieval process. This study also shows, the impact of varying distribution of the word similarity measures, against varying document vector dimensions, which can lead to improvements in the process of legal information retrieval.
This work proposes a novel adaptation of a pretrained sequence-to-sequence model to the task of document ranking. Our approach is fundamentally different from a commonly-adopted classification-based formulation of ranking, based on encoder-only pretr ained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as target words, and how the underlying logits of these target words can be interpreted as relevance probabilities for ranking. On the popular MS MARCO passage ranking task, experimental results show that our approach is at least on par with previous classification-based models and can surpass them with larger, more-recent models. On the test collection from the TREC 2004 Robust Track, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-dataset cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only model in a data-poor regime (i.e., with few training examples). We investigate this observation further by varying target words to probe the models use of latent knowledge.
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its wide and deep components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its deep component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.
103 - Shuo Sun , Kevin Duh 2020
Learning to rank is an important task that has been successfully deployed in many real-world information retrieval systems. Most existing methods compute relevance judgments of documents independently, without holistically considering the entire set of competing documents. In this paper, we explore modeling documents interactions with self-attention based neural networks. Although self-attention networks have achieved state-of-the-art results in many NLP tasks, we find empirically that self-attention provides little benefit over baseline neural learning to rank architecture. To improve the learning of self-attention weights, We propose simple yet effective regularization terms designed to model interactions between documents. Evaluations on publicly available Learning to Rank (LETOR) datasets show that training self-attention network with our proposed regularization terms can significantly outperform existing learning to rank methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا