ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction

128   0   0.0 ( 0 )
 نشر من قبل Huifeng Guo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its wide and deep components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its deep component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.



قيم البحث

اقرأ أيضاً

107 - Wenjin Wu , Guojun Liu , Hui Ye 2018
E-commerce sponsored search contributes an important part of revenue for the e-commerce company. In consideration of effectiveness and efficiency, a large-scale sponsored search system commonly adopts a multi-stage architecture. We name these stages as ad retrieval, ad pre-ranking and ad ranking. Ad retrieval and ad pre-ranking are collectively referred to as ad matching in this paper. We propose an end-to-end neural matching framework (EENMF) to model two tasks---vector-based ad retrieval and neural networks based ad pre-ranking. Under the deep matching framework, vector-based ad retrieval harnesses user recent behavior sequence to retrieve relevant ad candidates without the constraint of keyword bidding. Simultaneously, the deep model is employed to perform the global pre-ranking of ad candidates from multiple retrieval paths effectively and efficiently. Besides, the proposed model tries to optimize the pointwise cross-entropy loss which is consistent with the objective of predict models in the ranking stage. We conduct extensive evaluation to validate the performance of the proposed framework. In the real traffic of a large-scale e-commerce sponsored search, the proposed approach significantly outperforms the baseline.
368 - Yankun Xu , Jie Yang , Shiqi Zhao 2021
An accurate seizure prediction system enables early warnings before seizure onset of epileptic patients. It is extremely important for drug-refractory patients. Conventional seizure prediction works usually rely on features extracted from Electroence phalography (EEG) recordings and classification algorithms such as regression or support vector machine (SVM) to locate the short time before seizure onset. However, such methods cannot achieve high-accuracy prediction due to information loss of the hand-crafted features and the limited classification ability of regression and SVM algorithms. We propose an end-to-end deep learning solution using a convolutional neural network (CNN) in this paper. One and two dimensional kernels are adopted in the early- and late-stage convolution and max-pooling layers, respectively. The proposed CNN model is evaluated on Kaggle intracranial and CHB-MIT scalp EEG datasets. Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively. Comparison with state-of-the-art works indicates that the proposed model achieves exceeding prediction performance.
99 - Jiankai Sun , Jie Zhao , Huan Sun 2019
Routing newly posted questions (a.k.a cold questions) to potential answerers with the suitable expertise in Community Question Answering sites (CQAs) is an important and challenging task. The existing methods either focus only on embedding the graph structural information and are less effective for newly posted questions, or adopt manually engineered feature vectors that are not as representative as the graph embedding methods. Therefore, we propose to address the challenge of leveraging heterogeneous graph and textual information for cold question routing by designing an end-to-end framework that jointly learns CQA node embeddings and finds best answerers for cold questions. We conducted extensive experiments to confirm the usefulness of incorporating the textual information from question tags and demonstrate that an end-2-end framework can achieve promising performances on routing newly posted questions asked by both existing users and newly registered users.
Click-Through Rate (CTR) prediction is critical for industrial recommender systems, where most deep CTR models follow an Embedding & Feature Interaction paradigm. However, the majority of methods focus on designing network architectures to better cap ture feature interactions while the feature embedding, especially for numerical features, has been overlooked. Existing approaches for numerical features are difficult to capture informative knowledge because of the low capacity or hard discretization based on the offline expertise feature engineering. In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved. AutoDis consists of three core components: meta-embeddings, automatic discretization and aggregation. Specifically, we propose meta-embeddings for each numerical field to learn global knowledge from the perspective of field with a manageable number of parameters. Then the differentiable automatic discretization performs soft discretization and captures the correlations between the numerical features and meta-embeddings. Finally, distinctive and informative embeddings are learned via an aggregation function. Comprehensive experiments on two public and one industrial datasets are conducted to validate the effectiveness of AutoDis. Moreover, AutoDis has been deployed onto a mainstream advertising platform, where online A/B test demonstrates the improvement over the base model by 2.1% and 2.7% in terms of CTR and eCPM, respectively. In addition, the code of our framework is publicly available in MindSpore(https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/recommend/autodis).
In this paper, we propose a Deep Reinforcement Learning (RL) framework for task arrangement, which is a critical problem for the success of crowdsourcing platforms. Previous works conduct the personalized recommendation of tasks to workers via superv ised learning methods. However, the majority of them only consider the benefit of either workers or requesters independently. In addition, they cannot handle the dynamic environment and may produce sub-optimal results. To address these issues, we utilize Deep Q-Network (DQN), an RL-based method combined with a neural network to estimate the expected long-term return of recommending a task. DQN inherently considers the immediate and future reward simultaneously and can be updated in real-time to deal with evolving data and dynamic changes. Furthermore, we design two DQNs that capture the benefit of both workers and requesters and maximize the profit of the platform. To learn value functions in DQN effectively, we also propose novel state representations, carefully design the computation of Q values, and predict transition probabilities and future states. Experiments on synthetic and real datasets demonstrate the superior performance of our framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا