ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum hydrodynamics of spin winding

84   0   0.0 ( 0 )
 نشر من قبل Yaroslav Tserkovnyak
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An easy-plane spin winding in a quantum spin chain can be treated as a transport quantity, which propagates along the chain but has a finite lifetime due to phase slips. In a hydrodynamic formulation for the winding dynamics, the quantum continuity equation acquires a source term due to the transverse vorticity flow. The latter reflects the phase slips and generally compromises the global conservation law. A linear-response formalism for the nonlocal winding transport then reduces to a Kubo response for the winding flow along the spin chain, in conjunction with the parasitic vorticity flow transverse to it. One-dimensional topological hydrodynamics can be recovered when the vorticity flow is asymptotically small. Starting with a microscopic spin-chain formulation, we focus on the asymptotic behavior of the winding transport based on the renormalized sine-Gordon equation, incorporating phase slips as well as Gilbert damping. A generic electrical device is proposed to manifest this physics. We thus suggest winding conductivity as a tangible concept that can characterize low-energy dynamics in a broad class of quantum magnets.



قيم البحث

اقرأ أيضاً

We propose a generic scattering matrix model implementable in photonics to engineer a new Floquet metallic phase that combines two distinct topological properties: the winding of the bulk bands and the existence of robust chiral edge states. The wind ing of the bulk bands gives rise to a wavepacket oscillations in real space while conserving its initial momentum. Our findings open the way to the study of a new class of winding Floquet systems.
The field of spin hydrodynamics aims to describe magnetization dynamics from a fluid perspective. For ferromagnetic materials, there is an exact mapping between the Landau-Lifshitz equation and a set of dispersive hydrodynamic equations. This analogy provides ample opportunities to explore novel magnetization dynamics and magnetization states that can lead to applications relying entirely upon magnetic materials, for example, long-distance transport of information. This article provides an overview of the theoretical foundations of spin hydrodynamics and their physical interpretation in the context of spin transport. We discuss other proposed applications for spin hydrodynamics as well as our view on challenges and future research directions.
Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities play complementary roles: the Fub ini-Study metric, which introduces a notion of distance between quantum states defined over a parameter space, and the Berry curvature associated with Berry-phase effects and topological band structures. In fact, recent studies have revealed direct relations between these two important quantities, suggesting that topological properties can, in special cases, be deduced from the quantum metric. In this work, we establish general and exact relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians. In particular, we demonstrate that topological indices (Chern numbers or winding numbers) are bounded by the quantum volume determined by the quantum metric. Our theoretical framework, which builds on the Clifford algebra of Dirac matrices, is applicable to topological insulators and semimetals of arbitrary spatial dimensions, with or without chiral symmetry. This work clarifies the role of the Fubini-Study metric in topological states of matter, suggesting unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
66 - Linhu Li , Sen Mu , Ching Hua Lee 2020
Topologically quantized response is one of the focal points of contemporary condensed matter physics. While it directly results in quantized response coefficients in quantum systems, there has been no notion of quantized response in classical systems thus far. This is because quantized response has always been connected to topology via linear response theory that assumes a quantum mechanical ground state. Yet, classical systems can carry arbitrarily amounts of energy in each mode, even while possessing the same number of measurable edge modes as their topological winding. In this work, we discover the totally new paradigm of quantized classical response, which is based on the spectral winding number in the complex spectral plane, rather than the winding of eigenstates in momentum space. Such quantized response is classical insofar as it applies to phenomenological non-Hermitian setting, arises from fundamental mathematical properties of the Greens function, and shows up in steady-state response, without invoking a conventional linear response theory. Specifically, the ratio of the change in one quantity depicting signal amplification to the variation in one imaginary flux-like parameter is found to display fascinating plateaus, with their quantized values given by the spectral winding numbers as the topological invariants.
Bulk-edge correspondence is one of the most distinct properties of topological insulators. In particular, the 1D winding number $ $ has a one-to-one correspondence to the number of edge states in a chain of topological insulators with boundaries. By properly choosing the unit cells, we carry out numerical calculation to show explicitly in the extended SSH model that the winding numbers corresponding to the left and right unit cells may be used to predict the numbers of edge states on the two boundaries in a finite chain. Moreover, by drawing analogy between the SSH model and QWZ model, we show that the extended SSH model may be generalized to the extended QWZ model. By integrating the ``magnetic field over the momentum strip $0le p_2 le pi, 0le p_1 2pi$ in the Brillouin zone, we show a identity relating the 2D Chern number and the difference between the 1D winding numbers at $p_2=0 $ and $p_2 =pi$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا