ﻻ يوجد ملخص باللغة العربية
The field of spin hydrodynamics aims to describe magnetization dynamics from a fluid perspective. For ferromagnetic materials, there is an exact mapping between the Landau-Lifshitz equation and a set of dispersive hydrodynamic equations. This analogy provides ample opportunities to explore novel magnetization dynamics and magnetization states that can lead to applications relying entirely upon magnetic materials, for example, long-distance transport of information. This article provides an overview of the theoretical foundations of spin hydrodynamics and their physical interpretation in the context of spin transport. We discuss other proposed applications for spin hydrodynamics as well as our view on challenges and future research directions.
Spin-orbit coupling enables charge currents to give rise to spin currents and vice versa, which has applications in non-volatile magnetic memories, miniature microwave oscillators, thermoelectric converters and Terahertz devices. In the past two deca
We study, using simulations the dynamical properties of complex ferromagnetic granular materials. The system of grains is modeled by a disordered two-dimensional lattice in which the grains are embedded, while the magnitude and direction of the easy
Using exact diagonalization, Monte-Carlo, and mean-field techniques, characteristic temperature scales for ferromagnetic order are discussed for the Ising and the classical anisotropic Heisenberg model on finite lattices in one and two dimensions. Th
An easy-plane spin winding in a quantum spin chain can be treated as a transport quantity, which propagates along the chain but has a finite lifetime due to phase slips. In a hydrodynamic formulation for the winding dynamics, the quantum continuity e
Spintronic diodes are emerging as disruptive candidates for impacting several technological applications ranging from the Internet of Things to Artificial Intelligence. In this letter, an overview of the recent achievements on spintronic diodes is br