ﻻ يوجد ملخص باللغة العربية
Bulk-edge correspondence is one of the most distinct properties of topological insulators. In particular, the 1D winding number $ $ has a one-to-one correspondence to the number of edge states in a chain of topological insulators with boundaries. By properly choosing the unit cells, we carry out numerical calculation to show explicitly in the extended SSH model that the winding numbers corresponding to the left and right unit cells may be used to predict the numbers of edge states on the two boundaries in a finite chain. Moreover, by drawing analogy between the SSH model and QWZ model, we show that the extended SSH model may be generalized to the extended QWZ model. By integrating the ``magnetic field over the momentum strip $0le p_2 le pi, 0le p_1 2pi$ in the Brillouin zone, we show a identity relating the 2D Chern number and the difference between the 1D winding numbers at $p_2=0 $ and $p_2 =pi$.
The entanglement Chern number, the Chern number for the entanglement Hamiltonian, is used to charac- terize the Kane-Mele model, which is a typical model of the quantum spin Hall phase with the time reversal symmetry. We first obtain the global phase
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type.
We determine the effective total spin $J$ of local moments formed from acceptor states bound to Mn ions in GaAs by evaluating their magnetic Chern numbers. We find that when individual Mn atoms are close to the sample surface, the total spin changes
We study the Haldane model with nearest-neighbor interactions. This model is physically motivated by the associated ultracold atoms implementation. We show that the topological phase of the interacting model can be characterized by a physically obser