ﻻ يوجد ملخص باللغة العربية
We present an analytic study of conformal field theories on the real projective space $mathbb{RP}^d$, focusing on the two-point functions of scalar operators. Due to the partially broken conformal symmetry, these are non-trivial functions of a conformal cross ratio and are constrained to obey a crossing equation. After reviewing basic facts about the structure of correlators on $mathbb{RP}^d$, we study a simple holographic setup which captures the essential features of boundary correlators on $mathbb{RP}^d$. The analysis is based on calculations of Witten diagrams on the quotient space $AdS_{d+1}/mathbb{Z}_2$, and leads to an analytic approach to two-point functions. In particular, we argue that the structure of the conformal block decomposition of the exchange Witten diagrams suggests a natural basis of analytic functionals, whose action on the conformal blocks turns the crossing equation into certain sum rules. We test this approach in the canonical example of $phi^4$ theory in dimension $d=4-epsilon$, extracting the CFT data to order $epsilon^2$. We also check our results by standard field theory methods, both in the large $N$ and $epsilon$ expansions. Finally, we briefly discuss the relation of our analysis to the problem of construction of local bulk operators in AdS/CFT.
Harmonic maps that minimise the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the beha
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform
We introduce a new numerical algorithm based on semidefinite programming to efficiently compute bounds on operator dimensions, central charges, and OPE coefficients in 4D conformal and N=1 superconformal field theories. Using our algorithm, we dramat
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involvin
We use holography in order to study the entropy of thermal CFTs on (1+1)-dimensional curved backgrounds that contain horizons. Starting from the metric of the BTZ black hole, we perform explicit coordinate transformations that set the boundary metric