ﻻ يوجد ملخص باللغة العربية
A local SL(2,Z) transformation on the Type IIB brane configuration gives rise to an interesting class of superconformal field theories, known as the S-fold CFTs. Previously it has been proposed that the corresponding quiver theory has a link involving the T(U(N)) theory. In this paper, we generalise the preceding result by studying quivers that contain a T(G) link, where G is self-dual under S-duality. In particular, the cases of G = SO(2N), USp(2N) and G_2 are examined in detail. We propose the theories that arise from an appropriate insertion of an S-fold into a brane system, in the presence of an orientifold threeplane or an orientifold fiveplane. By analysing the moduli spaces, we test such a proposal against its S-dual configuration using mirror symmetry. The case of G_2 corresponds to a novel class of quivers, whose brane construction is not available. We present several mirror pairs, containing G_2 gauge groups, that have not been discussed before in the literature.
An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of S
Magnetic quivers and Hasse diagrams for Higgs branches of rank $r$ 4d $mathcal{N}=2$ SCFTs arising from $mathbb{Z}_{ell}$ $mathcal{S}$-fold constructions are discussed. The magnetic quivers are derived using three different methods: 1) Using clues li
Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold S
The study of exactly marginal deformations of superconformal field theories is a topic that has received considerable attention due to their rich properties. We investigate the $mathcal{N}=2$ preserving exactly marginal operators of 3d $S$-fold SCFTs
We use holography in order to study the entropy of thermal CFTs on (1+1)-dimensional curved backgrounds that contain horizons. Starting from the metric of the BTZ black hole, we perform explicit coordinate transformations that set the boundary metric