ترغب بنشر مسار تعليمي؟ اضغط هنا

Moduli Spaces of Lumps on Real Projective Space

95   0   0.0 ( 0 )
 نشر من قبل Steffen Krusch
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Harmonic maps that minimise the Dirichlet energy in their homotopy classes are known as lumps. Lump solutions on real projective space are explicitly given by rational maps subject to a certain symmetry requirement. This has consequences for the behaviour of lumps and their symmetries. An interesting feature is that the moduli space of charge three lumps is a $7$-dimensional manifold of cohomogeneity one which can be described as a one-parameter family of symmetry orbits of $D_2$ symmetric maps. In this paper, we discuss the charge three moduli spaces of lumps from two perspectives: discrete symmetries of lumps and the Riemann-Hurwitz formula. We then calculate the metric and find explicit formulas for various geometric quantities. We also discuss the implications for lump decay.

قيم البحث

اقرأ أيضاً

We present an analytic study of conformal field theories on the real projective space $mathbb{RP}^d$, focusing on the two-point functions of scalar operators. Due to the partially broken conformal symmetry, these are non-trivial functions of a confor mal cross ratio and are constrained to obey a crossing equation. After reviewing basic facts about the structure of correlators on $mathbb{RP}^d$, we study a simple holographic setup which captures the essential features of boundary correlators on $mathbb{RP}^d$. The analysis is based on calculations of Witten diagrams on the quotient space $AdS_{d+1}/mathbb{Z}_2$, and leads to an analytic approach to two-point functions. In particular, we argue that the structure of the conformal block decomposition of the exchange Witten diagrams suggests a natural basis of analytic functionals, whose action on the conformal blocks turns the crossing equation into certain sum rules. We test this approach in the canonical example of $phi^4$ theory in dimension $d=4-epsilon$, extracting the CFT data to order $epsilon^2$. We also check our results by standard field theory methods, both in the large $N$ and $epsilon$ expansions. Finally, we briefly discuss the relation of our analysis to the problem of construction of local bulk operators in AdS/CFT.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with $c_2(E)le4$, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space ${mathcal T}(d)$ of stable sheaves on $mathbb{P}^3$ with Hilbert polynomial $P(t)=dcdot t$, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity $d$; we describe all the irreducible components of ${mathcal T}(d)$ for $dle4$.
We determine the dimension of the moduli space of non-Abelian vortices in Yang-Mills-Chern-Simons-Higgs theory in 2+1 dimensions for gauge groups $G=U(1)times G$ with $G$ being an arbitrary semi-simple group. The calculation is carried out using a Ca llias-type index theorem, the moduli matrix approach and a D-brane setup in Type IIB string theory. We prove that the index theorem gives the number of zeromodes or moduli of the non-Abelian vortices, extend the moduli matrix approach to the Yang-Mills-Chern-Simons-Higgs theory and finally derive the effective Lagrangian of Collie and Tong using string theory.
In this paper, a generalized cusp is a properly convex manifold with strictly convex boundary that is diffeomorphic to $M times [0, infty)$ where $M$ is a closed Euclidean manifold. These are classified in [2]. The marked moduli space is homeomorphic to a subspace of the space of conjugacy classes of representations of $pi_1(M)$. It has one description as a generalization of a trace-variety, and another description involving weight data that is similar to that used to describe semi-simple Lie groups. It is also a bundle over the space of Euclidean similarity (conformally flat) structures on $M$, and the fiber is a closed cone in the space of cubic differentials. For 3-dimensional orientable generalized cusps, the fiber is homeomorphic to a cone on a solid torus.
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ ar e precisely the irreducible components of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs $G$-bundles and also to the parabolic Higgs bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا