ﻻ يوجد ملخص باللغة العربية
We use holography in order to study the entropy of thermal CFTs on (1+1)-dimensional curved backgrounds that contain horizons. Starting from the metric of the BTZ black hole, we perform explicit coordinate transformations that set the boundary metric in de Sitter or black-hole form. For a de Sitter boundary, the dual picture describes a CFT at a temperature different from that of the cosmological horizon. We determine minimal surfaces that allow us to compute the entanglement entropy of a boundary region, as well as the temperature affecting the energy associated with a probe quark on the boundary. For an entangling surface that coincides with the horizon, we study the relation between entanglement and gravitational entropy through an appropriate definition of the effective Newtons constant. We find that the leading contribution to the entropy is proportional to the horizon area, with a coefficient that accounts for the degrees of freedom of a CFT thermalized above the horizon temperature. We demonstrate the universality of our findings by considering the most general metric in a (2+1)-dimensional AdS bulk containing a non-rotating black hole and a static boundary with horizons.
We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation
We study space-time symmetries in scalar quantum field theory (including interacting theories) on static space-times. We first consider Euclidean quantum field theory on a static Riemannian manifold, and show that the isometry group is generated by o
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform
Inspiral of binary black holes occurs over a time-scale of many orbits, far longer than the dynamical time-scale of the individual black holes. Explicit evolutions of a binary system therefore require excessively many time steps to capture interestin
Utilizing the holographic technique, we investigate how the entanglement entropy evolves along the RG flow. After introducing a new generalized temperature which satisfies the thermodynamics-like law even in the IR regime, we find that the renormaliz