ﻻ يوجد ملخص باللغة العربية
Recently, the discovery of Galactic FRB 200428 associated with a X-ray burst (XRB) of SGR 1935+2154 has built a bridge between FRBs and magnetar activities. In this paper, we assume that the XRB occurs in the magnetar magnetosphere. We show that the observational properties of FRB 200428 and the associated XRB are consistent with the predictions of synchrotron maser emission at ultrarelativistic magnetized shocks, including radiation efficiency, similar energy occurrence frequency distributions, and simultaneous arrive times. It requires that the upstream medium is a mildly relativistic baryonic shell ejected by a previous flare. The energy injection by flares responsible for the radio bursts will produce a magnetar wind nebula, which has been used to explain the persistent radio source associated FRB 121102. We find that the radio continuum around SGR 1935+2154 can be well understood in the magnetar wind nebula model, by assuming the same energy injection rate $dot{E} propto t^{-1.37}$ as FRB 121102. The required baryonic mass is also estimated form the observations of FRB 121102 by GBT and FAST. By assuming the same radiation efficiency $eta sim 10^{-5}$, the total baryonic mass ejected from the central magnetar is about 0.005 solar mass. This value is much larger than the typical mass of a magnetar outer crust, but is comparable to the total mass of a magnetar crust.
Very recently a fast radio burst (FRB) 200428 associated with a strong X-ray burst from the Galactic magnetar SGR 1935+2154 has been detected, which is direct evidence supporting the magnetar progenitor models of FRBs. Assuming the FRB radiation mech
A fast radio burst (FRB) was recently detected to be associated with a hard X-ray burst from the Galactic magnetar SGR 1935+2154. Scenarios involving magnetars for FRBs are hence highly favored. In this work, we suggest that the impact between an ast
Owing to the detection of an extremely bright fast radio burst (FRB) 200428 associated with a hard X-ray counterpart from the magnetar soft gamma-ray repeater (SGR) 1935+2154, the distance of SGR 1935+2154 potentially hosted in the supernova remnant
The discovery that at least some Fast Radio Bursts (FRBs) repeat has ruled out cataclysmic events as the progenitors of these particular bursts. FRB~121102 is the most well-studied repeating FRB but despite extensive monitoring of the source, no unde
Very recently, an extremely bright fast radio burst (FRB) 200428 with two sub-millisecond pulses was discovered to come from the direction of the Galactic magnetar SGR 1935+2154, and an X-ray burst (XRB) counterpart was detected simultaneously. These