ﻻ يوجد ملخص باللغة العربية
Very recently a fast radio burst (FRB) 200428 associated with a strong X-ray burst from the Galactic magnetar SGR 1935+2154 has been detected, which is direct evidence supporting the magnetar progenitor models of FRBs. Assuming the FRB radiation mechanism is synchrotron maser emission from magnetized shocks, we develop a specific scenario by introducing a density jump structure of upstream medium, and thus the double-peaked character of FRB 200428 is a natural outcome. The luminosity and emission frequency of two pulses can be well explained in this scenario. Furthermore, we find that the synchrotron emission of shock-accelerated electrons is in the X-ray band, which therefore can be responsible for at least a portion of observed X-ray fluence. With proper upgrade, this density jump scenario can be potentially applied to FRBs with multiple peaks in the future.
Recently, the discovery of Galactic FRB 200428 associated with a X-ray burst (XRB) of SGR 1935+2154 has built a bridge between FRBs and magnetar activities. In this paper, we assume that the XRB occurs in the magnetar magnetosphere. We show that the
We study the conditions required for the production of the synchrotron maser emission downstream of a relativistic shock. We show that for weakly magnetized shocks, synchrotron maser emission can be generated at frequencies significantly exceeding th
Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on
A fast radio burst (FRB) was recently detected to be associated with a hard X-ray burst from the Galactic magnetar SGR 1935+2154. Scenarios involving magnetars for FRBs are hence highly favored. In this work, we suggest that the impact between an ast
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets which are characterized by their dominant type of energy, namely internal, kinetic, or magnetic. Each model is threaded by a helic