ﻻ يوجد ملخص باللغة العربية
Very recently, an extremely bright fast radio burst (FRB) 200428 with two sub-millisecond pulses was discovered to come from the direction of the Galactic magnetar SGR 1935+2154, and an X-ray burst (XRB) counterpart was detected simultaneously. These observations favor magnetar-based interior-driven models. In this Letter, we propose a different model for FRB 200428 associated with an XRB from SGR 1935+2154, in which a magnetar with high proper velocity encounters an asteroid of mass $sim10^{20},$g. This infalling asteroid in the stellar gravitational field is first possibly disrupted tidally into a great number of fragments at radius $sim {rm a,,few}$ times $10^{10},$cm, and then slowed around the Alfv$acute{rm e}$n radius by an ultra-strong magnetic field and in the meantime two major fragments of mass $sim 10^{17},$g that cross magnetic field lines produce two pulses of FRB 200428. The whole asteroid is eventually accreted onto the poles along magnetic field lines, impacting the stellar surface, creating a photon-e$^pm$ pair fireball trapped initially in the stellar magnetosphere, and further leading to an XRB. We show that this gravitationally-powered model can interpret all of the observed features self-consistently.
A fast radio burst (FRB) was recently detected to be associated with a hard X-ray burst from the Galactic magnetar SGR 1935+2154. Scenarios involving magnetars for FRBs are hence highly favored. In this work, we suggest that the impact between an ast
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 ke
Fast radio bursts (FRBs) are short pulses observed in radio band from cosmological distances. One class of models invoke soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs. Some radio pulses have been observed from some magnetars,
Owing to the detection of an extremely bright fast radio burst (FRB) 200428 associated with a hard X-ray counterpart from the magnetar soft gamma-ray repeater (SGR) 1935+2154, the distance of SGR 1935+2154 potentially hosted in the supernova remnant
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen