ترغب بنشر مسار تعليمي؟ اضغط هنا

A Magnetar-Asteroid Impact Model for FRB 200428 Associated with an X-ray Burst from SGR 1935+2154

136   0   0.0 ( 0 )
 نشر من قبل Zigao Dai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Z. G. Dai




اسأل ChatGPT حول البحث

Very recently, an extremely bright fast radio burst (FRB) 200428 with two sub-millisecond pulses was discovered to come from the direction of the Galactic magnetar SGR 1935+2154, and an X-ray burst (XRB) counterpart was detected simultaneously. These observations favor magnetar-based interior-driven models. In this Letter, we propose a different model for FRB 200428 associated with an XRB from SGR 1935+2154, in which a magnetar with high proper velocity encounters an asteroid of mass $sim10^{20},$g. This infalling asteroid in the stellar gravitational field is first possibly disrupted tidally into a great number of fragments at radius $sim {rm a,,few}$ times $10^{10},$cm, and then slowed around the Alfv$acute{rm e}$n radius by an ultra-strong magnetic field and in the meantime two major fragments of mass $sim 10^{17},$g that cross magnetic field lines produce two pulses of FRB 200428. The whole asteroid is eventually accreted onto the poles along magnetic field lines, impacting the stellar surface, creating a photon-e$^pm$ pair fireball trapped initially in the stellar magnetosphere, and further leading to an XRB. We show that this gravitationally-powered model can interpret all of the observed features self-consistently.



قيم البحث

اقرأ أيضاً

A fast radio burst (FRB) was recently detected to be associated with a hard X-ray burst from the Galactic magnetar SGR 1935+2154. Scenarios involving magnetars for FRBs are hence highly favored. In this work, we suggest that the impact between an ast eroid and a magnetar could explain such a detection. According to our calculations, an asteroid of mass $10^{20}$ g will be disrupted at a distance of $7 times 10^9$ cm when approaching the magnetar. The accreted material will flow along the magnetic field lines from the Alfven radius $sim 10^7$ cm. After falling onto the magnetars surface, an instant accretion column will be formed, producing a Comptonized X-ray burst and an FRB in the magnetosphere. We show that all the observational features of FRB 200428 could be interpreted self-consistently in this scenario. We predict quasi-periodic oscillations in this specific X-ray burst, which can serve as an independent observational test.
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 ke V range. The burst with the hardest spectrum, discovered and localized in real time by the INTEGRAL Burst Alert System, was spatially and temporally coincident with a short and very bright radio burst detected by the CHIME and STARE2 radio telescopes at 400-800 MHz and 1.4 GHz, respectively. Its lightcurve shows three narrow peaks separated by $sim$29 ms time intervals, superimposed on a broad pulse lasting $sim$0.6 s. The brightest peak had a delay of 6.5$pm$1.0 ms with respect to the 1.4 GHz radio pulse (that coincides with the second and brightest component seen at lower frequencies). The burst spectrum, an exponentially cut-off power law with photon index $Gamma=0.7_{-0.2}^{+0.4}$ and peak energy $E_p=65pm5$ keV, is harder than those of the bursts usually observed from this and other magnetars. By the analysis of an expanding dust scattering ring seen in X-rays with the {it Neil Gehrels Swift Observatory} XRT instrument, we derived a distance of 4.4$_{-1.3}^{+2.8}$ kpc for SGR 1935+2154, independent of its possible association with the supernova remnant G57.2+0.8. At this distance, the burst 20-200 keV fluence of $(6.1pm 0.3)times10^{-7}$ erg cm$^{-2}$ corresponds to an isotropic emitted energy of $sim1.4times10^{39}$ erg. This is the first burst with a radio counterpart observed from a soft $gamma$-ray repeater and it strongly supports models based on magnetars that have been proposed for extragalactic fast radio bursts.
118 - C.K. Li , L. Lin , S.L. Xiong 2020
Fast radio bursts (FRBs) are short pulses observed in radio band from cosmological distances. One class of models invoke soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs. Some radio pulses have been observed from some magnetars, however, no FRB-like events had been detected in association any magnetar burst, including one giant flare. Recently, a pair of FRB-like bursts (FRB 200428 hereafter) separated by milliseconds (ms) were detected from the general direction of the Galactic magnetar SGR J1935+2154. Here we report the detection of a non-thermal X-ray burst in the 1-250 keV energy band with the Insight-HXMT satellite, which we identify as emitted from SGR J1935+2154. The burst showed two hard peaks with a separation of 34 ms, broadly consistent with that of the two bursts in FRB 200428. The delay time between the double radio and X-ray peaks is about 8.57 s, fully consistent with the dispersion delay of FRB 200428. We thus identify the non-thermal X-ray burst is associated with FRB 200428 whose high energy counterpart is the two hard peaks in X-ray. Our results suggest that the non-thermal X-ray burst and FRB 200428 share the same physical origin in an explosive event from SGR J1935+2154.
Owing to the detection of an extremely bright fast radio burst (FRB) 200428 associated with a hard X-ray counterpart from the magnetar soft gamma-ray repeater (SGR) 1935+2154, the distance of SGR 1935+2154 potentially hosted in the supernova remnant (SNR) G57.2+0.8 can be revisited. Under the assumption that the SGR and the SNR are physically related, in this Letter, by investigating the dispersion measure (DM) of the FRB contributed by the foreground medium of our Galaxy and the local environments and combining with other observational constraints, we find that the distance of SGR 1935+2154 turns out to be $9.0pm2.5,$kpc and the SNR radius falls into $10$ to $18,$pc since the local DM contribution is as low as $0-18,$pc cm$^{-3}$. These results are basically consistent with the previous studies. In addition, an estimate for the Faraday rotation measure of the SGR and SNR is also carried out.
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen ing the connection between magnetars and fast radio bursts. We report on the X-ray monitoring of SGR J1935+2154 from ~3 days prior to ~3 weeks after its reactivation, using Swift, NuSTAR, and NICER. We detected X-ray pulsations in the NICER and NuSTAR observations, and constrained the spin period derivative to |Pdot| < 3e-11 s/s (3 sigma c.l.). The pulse profile showed a variable shape switching between single and double-peaked as a function of time and energy. The pulsed fraction decreased from ~34% to ~11% (5-10 keV) over ~10 days. The X-ray spectrum was well fit by an absorbed blackbody model with temperature decreasing from kT ~ 1.6 to 0.45-0.6 keV, plus a non-thermal component (Gamma ~ 1.2) observed up to ~25 keV with NuSTAR. The 0.3-10 keV X-ray luminosity (at 6.6 kpc) increased in less than four days from ~ 6e33 erg/s to about 3e35 erg/s and then decreased again to 2.5e34 erg/s over the following three weeks of the outburst. We also detected several X-ray bursts, with properties typical of short magnetar bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا