ﻻ يوجد ملخص باللغة العربية
Owing to the detection of an extremely bright fast radio burst (FRB) 200428 associated with a hard X-ray counterpart from the magnetar soft gamma-ray repeater (SGR) 1935+2154, the distance of SGR 1935+2154 potentially hosted in the supernova remnant (SNR) G57.2+0.8 can be revisited. Under the assumption that the SGR and the SNR are physically related, in this Letter, by investigating the dispersion measure (DM) of the FRB contributed by the foreground medium of our Galaxy and the local environments and combining with other observational constraints, we find that the distance of SGR 1935+2154 turns out to be $9.0pm2.5,$kpc and the SNR radius falls into $10$ to $18,$pc since the local DM contribution is as low as $0-18,$pc cm$^{-3}$. These results are basically consistent with the previous studies. In addition, an estimate for the Faraday rotation measure of the SGR and SNR is also carried out.
Very recently, an extremely bright fast radio burst (FRB) 200428 with two sub-millisecond pulses was discovered to come from the direction of the Galactic magnetar SGR 1935+2154, and an X-ray burst (XRB) counterpart was detected simultaneously. These
Fast radio bursts (FRBs) are short pulses observed in radio band from cosmological distances. One class of models invoke soft gamma-ray repeaters (SGRs), or magnetars, as the sources of FRBs. Some radio pulses have been observed from some magnetars,
We report on INTEGRAL observations of the soft $gamma$-ray repeater SGR 1935+2154 performed between 2020 April 28 and May 3. Several short bursts with fluence of $sim10^{-7}-10^{-6}$ erg cm$^{-2}$ were detected by the IBIS instrument in the 20-200 ke
A few years after its discovery as a magnetar, SGR J1935+2154 started a new burst-active phase on 2020 April 27, accompanied by a large enhancement of its X-ray persistent emission. Radio single bursts were detected during this activation, strengthen
Fast radio bursts (FRBs) are millisecond-duration, bright radio signals (fluence $mathrm{0.1 - 100,Jy,ms}$) emitted from extragalactic sources of unknown physical origin. The recent CHIME/FRB and STARE2 detection of an extremely bright (fluence $sim$