ﻻ يوجد ملخص باللغة العربية
Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamical pattern is compatible with critical Susceptible-Infected-Removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such non-trivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a non-monotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with non-trivial initial conditions. Far from heard immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging.
We introduce a mathematical description of the impact of sociality in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolut
Time-varying network topologies can deeply influence dynamical processes mediated by them. Memory effects in the pattern of interactions among individuals are also known to affect how diffusive and spreading phenomena take place. In this paper we ana
Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a signifi
We propose a dynamical model in which a network structure evolves in a self-organized critical (SOC) manner and explain a possible origin of the emergence of fractal and small-world networks. Our model combines a network growth and its decay by failu
In this paper, a simple dynamical model in which fractal networks are formed by self-organized critical (SOC) dynamics is proposed; the proposed model consists of growth and collapse processes. It has been shown that SOC dynamics are realized by the