ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic models for epidemic dynamics with social heterogeneity

84   0   0.0 ( 0 )
 نشر من قبل Mattia Zanella
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a mathematical description of the impact of sociality in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of social contacts of susceptible, infected and recovered individuals, whose proportions are driven by a classical SIR-type compartmental model in epidemiology. Explicit calculations show that the spread of the disease is closely related to moments of the contact distribution. Furthermore, the kinetic model allows to clarify how a selective control can be assumed to achieve a minimal lockdown strategy by only reducing individuals undergoing a very large number of daily contacts. We conduct numerical simulations which confirm the ability of the model to describe different phenomena characteristic of the rapid spread of an epidemic. Motivated by the COVID-19 pandemic, a last part is dedicated to fit numerical solutions of the proposed model with infection data coming from different European countries.



قيم البحث

اقرأ أيضاً

We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For a given social distancing individual strategies, we establish the epidemic reproduction number $R_0$ which can be used to identify network vulnerability and inform vaccination policies. In the second part of the paper we study the equilibrium of the social distancing game, in which individuals choose their social distancing level according to an anticipated global infection rate, which then must equal the actual infection rate following their choices. We give conditions for the existence and uniqueness of equilibrium. For the case of random regular graphs, we show that voluntary social distancing will always be socially sub-optimal.
Containment measures implemented by some countries to suppress the spread of COVID-19 have resulted in a slowdown of the epidemic characterized by time series of daily infections plateauing over extended periods of time. We prove that such a dynamica l pattern is compatible with critical Susceptible-Infected-Removed (SIR) dynamics. In traditional analyses of the critical SIR model, the critical dynamical regime is started from a single infected node. The application of containment measures to an ongoing epidemic, however, has the effect to make the system enter in its critical regime with a number of infected individuals potentially large. We describe how such non-trivial starting conditions affect the critical behavior of the SIR model. We perform a theoretical and large-scale numerical investigation of the model. We show that the expected outbreak size is an increasing function of the initial number of infected individuals, while the expected duration of the outbreak is a non-monotonic function of the initial number of infected individuals. Also, we precisely characterize the magnitude of the fluctuations associated with the size and duration of the outbreak in critical SIR dynamics with non-trivial initial conditions. Far from heard immunity, fluctuations are much larger than average values, thus indicating that predictions of plateauing time series may be particularly challenging.
The spread of COVID-19 has been thwarted in most countries through non-pharmaceutical interventions. In particular, the most effective measures in this direction have been the stay-at-home and closure strategies of businesses and schools. However, po pulation-wide lockdowns are far from being optimal carrying heavy economic consequences. Therefore, there is nowadays a strong interest in designing more efficient restrictions. In this work, starting from a recent kinetic-type model which takes into account the heterogeneity described by the social contact of individuals, we analyze the effects of introducing an optimal control strategy into the system, to limit selectively the mean number of contacts and reduce consequently the number of infected cases. Thanks to a data-driven approach, we show that this new mathematical model permits to assess the effects of the social limitations. Finally, using the model introduced here and starting from the available data, we show the effectivity of the proposed selective measures to dampen the epidemic trends.
104 - Guy Katriel 2018
We explore simple models aimed at the study of social contagion, in which contagion proceeds through two stages. When coupled with demographic turnover, we show that two-stage contagion leads to nonlinear phenomena which are not present in the basic `classical models of mathematical epidemiology. These include: bistability, critical transitions, endogenous oscillations, and excitability, suggesting that contagion models with stages could account for some aspects of the complex dynamics encountered in social life. These phenomena, and the bifurcations involved, are studied by a combination of analytical and numerical means.
We propose a minimal model for the collective dynamics of opinion formation in the society, by modifying kinetic exchange dynamics studied in the context of income, money or wealth distributions in a society. This model has an intriguing spontaneous symmetry breaking transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا