ترغب بنشر مسار تعليمي؟ اضغط هنا

Diversity of dark matter density profiles in the Galactic dwarf spheroidal satellites

176   0   0.0 ( 0 )
 نشر من قبل Kohei Hayashi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The core-cusp problem is one of the controversial issues in the standard paradigm of $Lambda$ cold dark matter ($Lambda$CDM) theory. However, under the assumption of conventional spherical symmetry, the strong degeneracy among model parameters makes it unclear whether dwarf spheroidal (dSph) galaxies indeed have cored dark matter density profiles at the centers. In this work, we revisit this problem using non-spherical mass models, which have the advantage of being able to alleviate the degeneracy. Applying our mass models to the currently available kinematic data of the eight classical dSphs, we find that within finite uncertainties, most of these dSphs favor cusped central profiles rather than cored ones. In particular, Draco has a cusped dark matter halo with high probability even considering a prior bias. We also find the diversity of the inner slopes in their dark matter halos. To clarify the origin of this diversity, we investigate the relation between the inner dark matter density slope and stellar-to-halo mass ratio for the sample dSphs and find this relation is generally in agreement with the predictions from recent $Lambda$CDM and hydrodynamical simulations. We also find that the simulated subhalos have anti-correlation between the dark matter density at 150 pc and pericenter distance, which is consistent with the observed one. We estimate their astrophysical factors for dark matter indirect searches and circular velocity profiles, associated with huge uncertainties. To more precisely estimate their dark matter profiles, wide-field spectroscopic surveys for the dSphs are essential.

قيم البحث

اقرأ أيضاً

Milky Way dwarf spheroidal galaxies are the tiniest observed galaxies and are currently associated with the largest fractions of dark matter, which is revealed by their too large velocity dispersions. However, most of them are found near their orbita l pericenters. This leads to a very low probability, P = 2 $10^{-7}$, that they could be long-lived satellites such as sub-halos predicted by cosmological simulations. Their proximity to their pericenters suggests instead that they are affected by tidal shocks, which provide sufficient kinematic energy to explain their high velocity dispersions. Dependency of the dark matter properties to their distance to the Milky Way appears to favor tidally shocked and out of equilibrium dSphs instead of self-equilibrium systems dominated by dark matter.
We modify the chemo-dynamical code GEAR to simulate the impact of self-interacting dark matter on the observable quantities of 19 low mass dwarf galaxies with a variety star forming properties. We employ a relatively high, velocity independent cross- section of $sigma/m = 10$cm$^2$/g and extract, in addition to integrated quantities, the total mass density profile, the luminosity profile, the line-of-sight velocities, the chemical abundance and the star formation history. We find that despite the creation of large cores at the centre of the dark matter haloes, the impact of SIDM on the observable quantities of quenched galaxies is indiscernible, dominated mostly by the stochastic build up of the stellar matter. As such we conclude that it is impossible to make global statements on the density profile of dwarf galaxies from single or small samples. Although based mostly on quenched galaxies, this finding supports other recent work putting into question the reliability of inferred cored density profiles that are derived from observed line-of-sight velocities.
Measuring the dark matter distribution in dwarf spheroidal galaxies (dSphs) from stellar kinematics is crucial for indirect dark matter searches, as these distributions set the fluxes for both dark matter annihilation (J-Factor) and decay (D-Factor). Here we produce a compilation of J and D-Factors for dSphs, including new calculations for several newly-discovered Milky Way (MW) satellites, for dSphs outside of the MW virial radius, and for M31 satellites. From this compilation we test for scaling relations between the J and D-factors and physical properties of the dSphs such as the velocity dispersion ($sigma_{mathrm{los}}$), the distance ($d$), and the stellar half-light radius ($r_{1/2}$). We find that the following scaling relation minimizes the residuals as compared to different functional dependencies on the observed dSphs properties $J(0.5 {rm deg}) = 10^{17.72} left(sigma_{mathrm{los}}/5,{rm km , s^{-1}}right)^4 left(d / 100,{rm kpc}right)^{-2}left( r_{1/2}/100 ,{rm pc} right)^{-1}$. We find this relation has considerably smaller scatter as compared to the simpler relations that scale only as $1/d^2$. We further explore scalings with luminosity ($L_V$), and find that the data do not strongly prefer a scaling including $L_V$ as compared to a pure $1/d^2$ scaling. The scaling relations we derive can be used to estimate the J-Factor without the full dynamical analysis, and will be useful for estimating limits on particle dark matter properties from new systems that do not have high-quality stellar kinematics.
The distribution of dark matter in dwarf galaxies can have important implications on our understanding of galaxy formation as well as the particle physics properties of dark matter. However, accurately characterizing the dark matter content of dwarf galaxies is challenging due to limited data and complex dynamics that are difficult to accurately model. In this paper, we apply spherical Jeans modeling to simulated stellar kinematic data of spherical, isotropic dwarf galaxies with the goal of identifying the future observational directions that can improve the accuracy of the inferred dark matter distributions in the Milky Way dwarf galaxies. We explore how the dark matter inference is affected by the location and number of observed stars as well as the line-of-sight velocity measurement errors. We use mock observation to demonstrate the difficulty in constraining the inner core/cusp of the dark matter distribution with datasets of fewer than 10,000 stars. We also demonstrate the need for additional measurements to make robust estimates of the expected dark matter annihilation signal strength. For the purpose of deriving robust indirect detection constraints, we identify Ursa Major II, Ursa Minor, and Draco as the systems that would most benefit from additional stars being observed.
We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su mmarize the main results of Hammer et al. (2019) who studied the main scaling relations of dSphs and show how dark-matter free galaxies in departure from equilibrium reproduce them well, while they appear to be challenging for the DM model. These results are consistent with our most recent knowledge about dSph past histories, including their orbits, their past star formation history and their progenitors, which are likely tiny dwarf irregular galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا