ﻻ يوجد ملخص باللغة العربية
Measuring the dark matter distribution in dwarf spheroidal galaxies (dSphs) from stellar kinematics is crucial for indirect dark matter searches, as these distributions set the fluxes for both dark matter annihilation (J-Factor) and decay (D-Factor). Here we produce a compilation of J and D-Factors for dSphs, including new calculations for several newly-discovered Milky Way (MW) satellites, for dSphs outside of the MW virial radius, and for M31 satellites. From this compilation we test for scaling relations between the J and D-factors and physical properties of the dSphs such as the velocity dispersion ($sigma_{mathrm{los}}$), the distance ($d$), and the stellar half-light radius ($r_{1/2}$). We find that the following scaling relation minimizes the residuals as compared to different functional dependencies on the observed dSphs properties $J(0.5 {rm deg}) = 10^{17.72} left(sigma_{mathrm{los}}/5,{rm km , s^{-1}}right)^4 left(d / 100,{rm kpc}right)^{-2}left( r_{1/2}/100 ,{rm pc} right)^{-1}$. We find this relation has considerably smaller scatter as compared to the simpler relations that scale only as $1/d^2$. We further explore scalings with luminosity ($L_V$), and find that the data do not strongly prefer a scaling including $L_V$ as compared to a pure $1/d^2$ scaling. The scaling relations we derive can be used to estimate the J-Factor without the full dynamical analysis, and will be useful for estimating limits on particle dark matter properties from new systems that do not have high-quality stellar kinematics.
The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Re
Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to d
Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore the
We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics.
Using the Fermi LAT data on the gamma ray emission from dwarf spheroidal galaxies, we get the upper bound on the probability of gamma rays from dark matter decay for the validity of explanation of the anomalous Kolar events as dark matter decay.