ترغب بنشر مسار تعليمي؟ اضغط هنا

Most dwarf spheroidal galaxies surrounding the Milky Way cannot be dark-matter dominated satellites

62   0   0.0 ( 0 )
 نشر من قبل Francois Hammer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Milky Way dwarf spheroidal galaxies are the tiniest observed galaxies and are currently associated with the largest fractions of dark matter, which is revealed by their too large velocity dispersions. However, most of them are found near their orbital pericenters. This leads to a very low probability, P = 2 $10^{-7}$, that they could be long-lived satellites such as sub-halos predicted by cosmological simulations. Their proximity to their pericenters suggests instead that they are affected by tidal shocks, which provide sufficient kinematic energy to explain their high velocity dispersions. Dependency of the dark matter properties to their distance to the Milky Way appears to favor tidally shocked and out of equilibrium dSphs instead of self-equilibrium systems dominated by dark matter.



قيم البحث

اقرأ أيضاً

We have found that the high velocity dispersions of dwarf spheroidal galaxies (dSphs) can be well explained by Milky Way (MW) tidal shocks, which reproduce precisely the gravitational acceleration previously attributed to dark matter (DM). Here we su mmarize the main results of Hammer et al. (2019) who studied the main scaling relations of dSphs and show how dark-matter free galaxies in departure from equilibrium reproduce them well, while they appear to be challenging for the DM model. These results are consistent with our most recent knowledge about dSph past histories, including their orbits, their past star formation history and their progenitors, which are likely tiny dwarf irregular galaxies.
The nature of Milky Way dwarf spheroidals (MW dSphs) has been questioned, in particular whether they are dominated by dark matter (DM). Here we investigate an alternative scenario, for which tidal shocks are exerted by the MW to DM-free dSphs after a first infall of their gas-rich progenitors, and for which theoretical calculations have been verified by pure N-body simulations. Whether or not the dSphs are on their first infall cannot be resolved on the sole basis of their star formation history. In fact, gas removal may cause complex gravitational instabilities and near-pericenter passages can give rise to tidal disruptive processes. Advanced precision with the Gaia satellite in determining both their past orbital motions and the MW velocity curve is, however, providing crucial results. First, tidal shocks explain why DM-free dSphs are found preferentially near their pericenter, where they are in a destructive process, while their chance to be long-lived satellites is associated with a very low probability P~ 2 10^-7, which is at odds with the current DM-dominated dSph scenario. Second, most dSph binding energies are consistent with a first infall. Third, the MW tidal shocks that predict the observed dSph velocity dispersions are themselves predicted in amplitude by the most accurate MW velocity curve. Fourth, tidal shocks accurately predict the forces or accelerations exerted at half-light radius of dSphs, including the MW and the Magellanic System gravitational attractions. The above is suggestive of dSphs that are DM-free and tidally shocked near their pericenters, which may provoke a significant quake in our understanding of near-field cosmology.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along thei r lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
122 - H. Flores 2015
The location of dark-matter free, tidal dwarf galaxies (TDGs) in the baryonic Tully Fisher (bTF) diagram has been used to test cosmological scenarios, leading to various and controversial results. Using new high-resolution 3D spectroscopic data, we r e-investigate the morpho-kinematics of these galaxies to verify whether or not they can be used for such a purpose. We find that the three observed TDGs are kinematically not virialized and show complex morphologies and kinematics, leading to considerable uncertainties about their intrinsic rotation velocities and their locations on the bTF. Only one TDG can be identify as a (perturbed) rotation disk that it is indeed a sub-component of NGC5291N and that lies at $<$1$sigma$ from the local bTF relation. It results that the presently studied TDGs are young, dynamically forming objects, which are not enough virialized to robustly challenge cosmological scenarios.
The core-cusp problem is one of the controversial issues in the standard paradigm of $Lambda$ cold dark matter ($Lambda$CDM) theory. However, under the assumption of conventional spherical symmetry, the strong degeneracy among model parameters makes it unclear whether dwarf spheroidal (dSph) galaxies indeed have cored dark matter density profiles at the centers. In this work, we revisit this problem using non-spherical mass models, which have the advantage of being able to alleviate the degeneracy. Applying our mass models to the currently available kinematic data of the eight classical dSphs, we find that within finite uncertainties, most of these dSphs favor cusped central profiles rather than cored ones. In particular, Draco has a cusped dark matter halo with high probability even considering a prior bias. We also find the diversity of the inner slopes in their dark matter halos. To clarify the origin of this diversity, we investigate the relation between the inner dark matter density slope and stellar-to-halo mass ratio for the sample dSphs and find this relation is generally in agreement with the predictions from recent $Lambda$CDM and hydrodynamical simulations. We also find that the simulated subhalos have anti-correlation between the dark matter density at 150 pc and pericenter distance, which is consistent with the observed one. We estimate their astrophysical factors for dark matter indirect searches and circular velocity profiles, associated with huge uncertainties. To more precisely estimate their dark matter profiles, wide-field spectroscopic surveys for the dSphs are essential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا