ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of cored density profiles on the observable quantities of dwarf spheroidal galaxies

66   0   0.0 ( 0 )
 نشر من قبل David Harvey
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We modify the chemo-dynamical code GEAR to simulate the impact of self-interacting dark matter on the observable quantities of 19 low mass dwarf galaxies with a variety star forming properties. We employ a relatively high, velocity independent cross-section of $sigma/m = 10$cm$^2$/g and extract, in addition to integrated quantities, the total mass density profile, the luminosity profile, the line-of-sight velocities, the chemical abundance and the star formation history. We find that despite the creation of large cores at the centre of the dark matter haloes, the impact of SIDM on the observable quantities of quenched galaxies is indiscernible, dominated mostly by the stochastic build up of the stellar matter. As such we conclude that it is impossible to make global statements on the density profile of dwarf galaxies from single or small samples. Although based mostly on quenched galaxies, this finding supports other recent work putting into question the reliability of inferred cored density profiles that are derived from observed line-of-sight velocities.



قيم البحث

اقرأ أيضاً

The core-cusp problem is one of the controversial issues in the standard paradigm of $Lambda$ cold dark matter ($Lambda$CDM) theory. However, under the assumption of conventional spherical symmetry, the strong degeneracy among model parameters makes it unclear whether dwarf spheroidal (dSph) galaxies indeed have cored dark matter density profiles at the centers. In this work, we revisit this problem using non-spherical mass models, which have the advantage of being able to alleviate the degeneracy. Applying our mass models to the currently available kinematic data of the eight classical dSphs, we find that within finite uncertainties, most of these dSphs favor cusped central profiles rather than cored ones. In particular, Draco has a cusped dark matter halo with high probability even considering a prior bias. We also find the diversity of the inner slopes in their dark matter halos. To clarify the origin of this diversity, we investigate the relation between the inner dark matter density slope and stellar-to-halo mass ratio for the sample dSphs and find this relation is generally in agreement with the predictions from recent $Lambda$CDM and hydrodynamical simulations. We also find that the simulated subhalos have anti-correlation between the dark matter density at 150 pc and pericenter distance, which is consistent with the observed one. We estimate their astrophysical factors for dark matter indirect searches and circular velocity profiles, associated with huge uncertainties. To more precisely estimate their dark matter profiles, wide-field spectroscopic surveys for the dSphs are essential.
125 - Y. Revaz , P. Jablonka , T. Sawala 2009
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety in the Local Group dSph properties. The initial total mass (gas + dark matter) of these galaxies is the main driver of their evolution. Star formation (SF) occurs in series of short bursts. In massive systems, the very short intervals between the SF peaks mimic a continuous star formation rate, while less massive systems exhibit well separated SF bursts, as identified observationally. The delay between the SF events is controlled by the gas cooling time dependence on galaxy mass. The observed global scaling relations, luminosity-mass and luminosity-metallicity, are reproduced with low scatter. We take advantage of the unprecedentedly large sample size and data homogeneity of the ESO Large Programme DART, and add to it a few independent studies, to constrain the star formation history of five Milky Way dSphs, Sextans, LeoII, Carina, Sculptor and Fornax. For the first time, [Mg/Fe] vs [Fe/H] diagrams derived from high-resolution spectroscopy of hundreds of individual stars are confronted with model predictions. We find that the diversity in dSph properties may well result from intrinsic evolution. We note, however, that the presence of gas in the final state of our simulations, of the order of what is observed in dwarf irregulars, calls for removal by external processes.
134 - P. North 2012
We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had a lready been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia.
The gamma-ray observation of the dwarf spheroidal galaxies (dSphs) is a promising approach to search for the dark matter annihilation (or decay) signal. The dSphs are the nearby satellite galaxies with a clean environment and dense dark matter halo s o that they give stringent constraints on the 1 TeV dark matter. However, recent studies have revealed that current estimation of astrophysical factors relevant for the dark matter searches are not conservative, where the various non-negligible systematic uncertainties are not taken into account. Among them, the effect of foreground stars on the astrophysical factors has not been paid much attention, which becomes more important for deeper and wider stellar surveys in the future. In this article, we assess the effects of the foreground contamination by generating the mock samples of stars and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and find that the cuts on the velocity and surface gravity can efficiently eliminate the contamination. We also propose a new likelihood function which includes the foreground distribution function. We apply this likelihood function to the fit of the three types of the mock data (Ursa Minor, Draco with large dark matter halo, and Draco with small halo) and three cases of the observation. The likelihood successfully reproduces the input $J$-factor value while the fit without considering the foreground distribution gives large deviation from the input value by a factor of three.
We use the SPHINX suite of high-resolution cosmological radiation hydrodynamics simulations to study how spatially and temporally inhomogeneous reionization impacts the baryonic content of dwarf galaxies and cosmic filaments. The SPHINX simulations s imultaneously model an inhomogeneous reionization, follow the escape of ionising radiation from thousands of galaxies, and resolve haloes well below the atomic cooling threshold. This makes them an ideal tool for examining how reionization impacts star formation and the gas content of dwarf galaxies. We compare simulations with and without stellar radiation to isolate the effects of radiation feedback from that of supernova, cosmic expansion, and numerical resolution. We find that the gas content of cosmic filaments can be reduced by more than 80% following reionization. The gas inflow rates into haloes with $M_{vir}<10^8M_{odot}$ are strongly affected and are reduced by more than an order of magnitude compared to the simulation without reionization. A significant increase in gas outflow rates is found for halo masses $M_{vir}<7times10^7M_{odot}$. Our simulations show that inflow suppression, rather than photoevaporation, is the dominant mechanism by which the baryonic content of high-redshift dwarf galaxies is regulated. At fixed redshift and halo mass, there is a large scatter in the halo baryon fractions that is entirely dictated by the timing of reionization in the local region surrounding a halo which can change by $Delta z>3$ at fixed mass. Finally, although the gas content of high-redshift dwarf galaxies is significantly impacted by reionization, we find that most haloes with $M_{vir}<10^8M_{odot}$ can remain self-shielded and form stars long after reionization, until their local gas reservoir is depleted, suggesting that local group dwarf galaxies do not necessarily exhibit star formation histories that peak prior to $z=6$...
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا