ترغب بنشر مسار تعليمي؟ اضغط هنا

In Situ Microbeam Surface X-ray Scattering Reveals Alternating Step Kinetics During Crystal Growth

135   0   0.0 ( 0 )
 نشر من قبل Carol Thompson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally identify which step has the A or B structure, it has not been possible to determine which has faster adatom attachment kinetics. Here we show that in situ microbeam surface X-ray scattering can determine whether A or B steps have faster kinetics under specific growth conditions. We demonstrate this for organo-metallic vapor phase epitaxy of (0001) GaN. X-ray measurements performed during growth find that the average width of terraces above A steps increases with growth rate, indicating that attachment rate constants are higher for A steps, in contrast to most predictions. Our results have direct implications for understanding the atomic-scale mechanisms of GaN growth and can be applied to a wide variety of related crystals.

قيم البحث

اقرأ أيضاً

In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrosta tic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in-situ synchrotron x-ray diffraction during the growth of BaTiO$_3$/SrTiO$_3$ superlattices on SrTiO$_3$ substrates by off-axis RF magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO$_3$ substrates and 20nm SrRuO$_3$ thin films on SrTiO$_3$ substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.
The properties of artificially grown thin films are strongly affected by surface processes during growth. Coherent X-rays provide an approach to better understand such processes and fluctuations far from equilibrium. Here we report results for vacuum deposition of C$_{60}$ on a graphene-coated surface investigated with X-ray Photon Correlation Spectroscopy in surface-sensitive conditions. Step-flow is observed through measurement of the step-edge velocity in the late stages of growth after crystalline mounds have formed. We show that the step-edge velocity is coupled to the terrace length, and that there is a variation in the velocity from larger step spacing at the center of crystalline mounds to closely-spaced, more slowly propagating steps at their edges. The results extend theories of surface growth, since the behavior is consistent with surface evolution driven by processes that include surface diffusion, the motion of step-edges, and attachment at step edges with significant step-edge barriers.
Strain engineering of perovskite oxide thin films has proven to be an extremely powerful method for enhancing and inducing ferroelectric behavior. In ferroelectric thin films and superlattices, the polarization is intricately linked to crystal struct ure, but we show here that it can also play an important role in the growth process, influencing growth rates, relaxation mechanisms, electrical properties and domain structures. We have studied this effect in detail by focusing on the properties of BaTiO$_{3}$ thin films grown on very thin layers of PbTiO$_{3}$ using a combination of x-ray diffraction, piezoforce microscopy, electrical characterization and rapid in-situ x-ray diffraction reciprocal space maps during the growth using synchrotron radiation. Using a simple model we show that the changes in growth are driven by the energy cost for the top material to sustain the polarization imposed upon it by the underlying layer, and these effects may be expected to occur in other multilayer systems where polarization is present during growth. Our research motivates the concept of polarization engineering during the growth process as a new and complementary approach to strain engineering.
Grazing incidence anomalous x-ray scattering was used to monitor in situ the molecular beam epitaxy growth of GaN/AlN quantum dots (QDs). The strain state was studied by means of grazing incidence Multi-wavelength Anomalous Di raction (MAD) in both t he QDs and the AlN during the progressive coverage of QDs by AlN monolayers. Vertical correlation in the position of the GaN QDs was also studied by both grazing incidence MAD and anomalous Grazing Incidence Small Angle Scattering (GISAXS) as a function of the number of GaN planes and of the AlN spacer thickness. In a regime where the GaN QDs and the AlN capping are mutually strain influenced, a vertical correlation in the position of QDs is found with as a side-e ect an average increase in the QDs width.
Resonance anomalous surface x-ray scattering (RASXS) technique was applied to electrochemical interface studies. It was used to determine the chemical states of electrochemically formed anodic oxide monolayers on platinum surface. It is shown that RA SXS exhibits strong polarization dependence when the surface is significantly modified. The polarization dependence is demonstrated for three examples; anodic oxide formation, sulfate adsorption, and CO adsorption on platinum surfaces. s- and p- polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary theoretical considerations are also presented for the origin of the polarization dependence in RASXS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا