ﻻ يوجد ملخص باللغة العربية
In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in-situ synchrotron x-ray diffraction during the growth of BaTiO$_3$/SrTiO$_3$ superlattices on SrTiO$_3$ substrates by off-axis RF magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO$_3$ substrates and 20nm SrRuO$_3$ thin films on SrTiO$_3$ substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.
Strain engineering of perovskite oxide thin films has proven to be an extremely powerful method for enhancing and inducing ferroelectric behavior. In ferroelectric thin films and superlattices, the polarization is intricately linked to crystal struct
Molecular beam epitaxy of Fe3Si on GaAs(001) is studied in situ by grazing incidence x-ray diffraction. Layer-by-layer growth of Fe3Si films is observed at a low growth rate and substrate temperatures near 200 degrees Celsius. A damping of x-ray inte
The stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally ide
The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present a X-ray diffractometer called ALIX, which has been set up at the low-energy IRRSUD beamline of the GA
We report on growth and ferroelectric (FE) properties of superlattices (SLs) composed of the FE BaTiO3 and the paraelectric (PE) CaTiO3. Previous theories have predicted that the polarization in (BaTiO3)n/(CaTiO3)n SLs increases as the sublayer thick