ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Spin Fluctuations in the Frustrated A-site Spinel CuAl2O4

134   0   0.0 ( 0 )
 نشر من قبل Hwanbeom Cho
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed nuclear magnetic resonance (NMR) and muon spin relaxation ({mu}SR) experiments to identify the magnetic ground state of the frustrated quantum A-site spinel, CuAl2O4. Our results verify that the ground state does not exhibit a long-range magnetic ordering, but a glass-like transition manifests at T*=2.3 K. However, the Gaussian shape and the weak longitudinal field dependence of {mu}SR spectra below T* show that the ground state has dynamic spin fluctuations, distinct from those of conventional spin-glasses.



قيم البحث

اقرأ أيضاً

CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = Theta_CW/Tm ~67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.
We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($mu$SR) and neutron scattering studies. Our zer o-field (ZF) and longitudinal-field (LF)-$mu$SR results demonstrate the slowing down of the Cu$^{2+}$ spin fluctuations below 4.0 K. The saturation of the ZF relaxation rate at low temperature, together with its weak dependence on the longitudinal field between 0 and 3.2 kG, indicates the presence of dynamic spin fluctuations persisting even at 80 mK without static order. Neutron scattering study reveals the gaped magnetic excitations with three modes at 7.7, 13.5 and 33 meV. Our DFT calculations reveal that the next nearest neighbors (NNN) AFM exchange ($J_{AFM}$ = 31 meV) is stronger than the NN FM exchange ($J_{FM}$ = -21 meV) indicating the importance of the orbital degrees of freedom. Our results suggest that the physics of Li$_3$Cu$_2$SbO$_6$ can be explained by an alternating AFM chain rather than the honeycomb lattice.
The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order i n spite of a similar structural transition around 90,K. Here, we report results of Raman scattering experiments as a function of temperature and polarization and simulations based on exact diagonalization of a frustrated spin model. Both experiment and theory find a persistent low energy peak close to 500cm$^{-1}$ in $B_{1g}$ symmetry, which softens slightly around 100,K, that we assign to spin excitations. By comparing with results from neutron scattering, this study provides evidence for nearly frustrated stripe order in FeSe.
Muon spin rotation (muSR) experiments reveal unconventional spin freezing and dynamics in the two-dimensional (2D) triangular lattice antiferromagnet NiGa2S4. Long-lived disordered Ni-spin freezing (correlation time > 10-6 s at 2 K) sets in below T_f = 8.5 +- 0.5 K with a mean-field-like temperature dependence. The observed exponential temperature dependence of the muon spin relaxation above T_f is strong evidence for 2D critical spin fluctuations. Slow Ni spin fluctuations coexist with quasistatic magnetism at low temperatures but are rapidly suppressed for fields > 10 mT, in marked contrast with the field-independent specific heat. The muSR and bulk susceptibility data indicate a well-defined 2D phase transition at T_f, below which NiGa2S4 is neither a conventional magnet nor a singlet spin liquid.
151 - J. Zhang , L. Ma , J. Dai 2014
We report $^{51}$V nuclear magnetic resonance (NMR) studies on single crystals of the multiferroic material FeVO$_4$. The high-temperature Knight shift shows Curie-Weiss behavior, $^{51}K = a/(T + theta)$, with a large Weiss constant $theta approx$ 1 16 K. However, the $^{51}$V spectrum shows no ordering near these temperatures, splitting instead into two peaks below 65 K, which suggests only short-ranged magnetic order on the NMR time scale. Two magnetic transitions are identified from peaks in the spin-lattice relaxation rate, $1/^{51}T_1$, at temperatures $T_{N1} approx$ 19 K and $T_{N2} approx$ 13 K, which are lower than the estimates obtained from polycrystalline samples. In the low-temperature incommensurate spiral state, the maximum ordered moment is estimated as 1.95${mu}_B$/Fe, or 1/3 of the local moment. Strong low-energy spin fluctuations are also indicated by the unconventional power-law temperature dependence $1/^{51}T_1 propto T^2$. The large Weiss constant, short-range magnetic correlations far above $T_{N1}$, small ordered moment, significant low-energy spin fluctuations, and incommensurate ordered phases all provide explicit evidence for strong magnetic frustration in FeVO$_4$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا