ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin glass behavior in frustrated quantum spin system CuAl2O4 with a possible orbital liquid state

74   0   0.0 ( 0 )
 نشر من قبل Je-Geun Park
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = Theta_CW/Tm ~67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.

قيم البحث

اقرأ أيضاً

The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration . Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.
We report the bulk magnetic properties of a yet unexplored vanadium-based multivalued spinel system, Zn3V3O8. A Curie-Weiss fit of our dc magnetic susceptibility data in the temperature region from 140 to 300 K yields a Curie constant C = 0.75cm3K/mo le V, theta CW = -370 K. We have observed a splitting between the zero field cooled ZFC and field cooled FC susceptibility curves below a temperature Tirr of about 6.3 K. The value of the frustration parameter nearly equals to 100 suggests that the system is strongly frustrated. From the ac susceptibility measurements we find a logarithmic variation of freezing temperature (Tf ) with frequency attesting to the formation of a spin glass below Tf . However, the value of the characteristic frequency obtained from the Vogel-Fulcher fit suggests that the ground state is closer to a cluster glass rather than a conventional spin glass. We explored further consequences of the spin glass behavior and observed aging phenomena and memory effect (both in ZFC and FC). We found that a positive temperature cycle erases the memory, as predicted by the hierarchical model. From the heat capacity CP data, a hump-like anomaly was observed in CP /T at about 3.75 K. Below this temperature the magnetic heat capacity shows a nearly linear dependence with T which is consistent with the formation of a spin glass state below Tf in Zn3V3O8.
We performed nuclear magnetic resonance (NMR) and muon spin relaxation ({mu}SR) experiments to identify the magnetic ground state of the frustrated quantum A-site spinel, CuAl2O4. Our results verify that the ground state does not exhibit a long-range magnetic ordering, but a glass-like transition manifests at T*=2.3 K. However, the Gaussian shape and the weak longitudinal field dependence of {mu}SR spectra below T* show that the ground state has dynamic spin fluctuations, distinct from those of conventional spin-glasses.
Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application of hydrostatic pressure. We measured the magnetic properties of Cs2CuCl4 following the application and release of pressure after 3 days. We observed a previously unknown ordered magnetic phase with a transition temperature of 9 K. Furthermore, the recovered sample with new magnetic ground state possesses an equivalent crystal structure to the uncompressed one with antiferromagnetic quantum spin liquid phase.
We report here a detailed study of AC/DC magnetization and longitudinal/transverse transport properties of La$_{1.2}$Sr$_{1.8}$Mn$_{2}$O$_{7}$ single crystals below $T_{c}$ = 121 K. We find that the resistivity upturn below 40 K is related to the ree ntrant spin glass phase at the same temperature, accompanied by additional anomalous Hall effects. The carrier concentration from the ordinary Hall effects remains constant during the transition and is close to the nominal doping level (0.4 holes/Mn). The spin glass behavior comes from the competition between ferromagnetic double exchange and antiferromagnetic superexchange interactions, which leads to phase separation, i.e. a mixture of ferromagnetic and antiferromagnetic clusters, representing the canted antiferromagnetic state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا