ﻻ يوجد ملخص باللغة العربية
We report the signatures of dynamic spin fluctuations in the layered honeycomb Li$_3$Cu$_2$SbO$_6$ compound, with a 3$d$ S = 1/2 $d^9$ Cu$^{2+}$ configuration, through muon spin rotation and relaxation ($mu$SR) and neutron scattering studies. Our zero-field (ZF) and longitudinal-field (LF)-$mu$SR results demonstrate the slowing down of the Cu$^{2+}$ spin fluctuations below 4.0 K. The saturation of the ZF relaxation rate at low temperature, together with its weak dependence on the longitudinal field between 0 and 3.2 kG, indicates the presence of dynamic spin fluctuations persisting even at 80 mK without static order. Neutron scattering study reveals the gaped magnetic excitations with three modes at 7.7, 13.5 and 33 meV. Our DFT calculations reveal that the next nearest neighbors (NNN) AFM exchange ($J_{AFM}$ = 31 meV) is stronger than the NN FM exchange ($J_{FM}$ = -21 meV) indicating the importance of the orbital degrees of freedom. Our results suggest that the physics of Li$_3$Cu$_2$SbO$_6$ can be explained by an alternating AFM chain rather than the honeycomb lattice.
Ac and dc magnetization and heat-capacity (C) measurements performed on the pseudo-one-dimensional compound Sr$_3$CuIrO$_6$ reveal a competition between antiferromagnetic (AF) and ferromagnetic (F) exchange couplings, as evidenced by frequency depend
We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr$_3$Cu$_{1-x}$Zn$_x$IrO$_6$. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K$_4$CdCl$_6$ structure wi
We have investigated the magnetic behavior of the nano crystals, synthesized by high-energy ball-milling, for a well-known geometrically frustrated spin-chain system, Ca3CoRhO6, and compared its magnetic characteristics with those of the bulk form by
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presenc
K$_3$Cu$_3$AlO$_2$(SO$_4$)$_4$ is a highly one-dimensional spin-1/2 inequilateral diamond-chain antiferromagnet. Spinon continuum and spin-singlet dimer excitations are observed in the inelastic neutron scattering spectra, which is in excellent agree