ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional spin freezing and fluctuations in the frustrated antiferromagnet NiGa2S4

69   0   0.0 ( 0 )
 نشر من قبل Douglas E. MacLaughlin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon spin rotation (muSR) experiments reveal unconventional spin freezing and dynamics in the two-dimensional (2D) triangular lattice antiferromagnet NiGa2S4. Long-lived disordered Ni-spin freezing (correlation time > 10-6 s at 2 K) sets in below T_f = 8.5 +- 0.5 K with a mean-field-like temperature dependence. The observed exponential temperature dependence of the muon spin relaxation above T_f is strong evidence for 2D critical spin fluctuations. Slow Ni spin fluctuations coexist with quasistatic magnetism at low temperatures but are rapidly suppressed for fields > 10 mT, in marked contrast with the field-independent specific heat. The muSR and bulk susceptibility data indicate a well-defined 2D phase transition at T_f, below which NiGa2S4 is neither a conventional magnet nor a singlet spin liquid.

قيم البحث

اقرأ أيضاً

We used inelastic neutron scattering to show that well below its N{e}el temperature, $T_{rm N}$, the two-dimensional (2D) XY nearly-triangular antiferromagnet YMnO$_{3}$ has a prominent {it central peak} associated with 2D antiferromagnetic fluctuati ons with a characteristic life time of 0.55(5) ps, coexisting with the conventional long-lived spin-waves. Existence of the two time scales suggests competition between the N{e}el phase favored by weak interplane interactions, and the Kosterlitz-Thouless phase intrinsic to the 2D XY spin system.
The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order i n spite of a similar structural transition around 90,K. Here, we report results of Raman scattering experiments as a function of temperature and polarization and simulations based on exact diagonalization of a frustrated spin model. Both experiment and theory find a persistent low energy peak close to 500cm$^{-1}$ in $B_{1g}$ symmetry, which softens slightly around 100,K, that we assign to spin excitations. By comparing with results from neutron scattering, this study provides evidence for nearly frustrated stripe order in FeSe.
109 - J. Zhang , L. Ma , J. Dai 2014
We report $^{51}$V nuclear magnetic resonance (NMR) studies on single crystals of the multiferroic material FeVO$_4$. The high-temperature Knight shift shows Curie-Weiss behavior, $^{51}K = a/(T + theta)$, with a large Weiss constant $theta approx$ 1 16 K. However, the $^{51}$V spectrum shows no ordering near these temperatures, splitting instead into two peaks below 65 K, which suggests only short-ranged magnetic order on the NMR time scale. Two magnetic transitions are identified from peaks in the spin-lattice relaxation rate, $1/^{51}T_1$, at temperatures $T_{N1} approx$ 19 K and $T_{N2} approx$ 13 K, which are lower than the estimates obtained from polycrystalline samples. In the low-temperature incommensurate spiral state, the maximum ordered moment is estimated as 1.95${mu}_B$/Fe, or 1/3 of the local moment. Strong low-energy spin fluctuations are also indicated by the unconventional power-law temperature dependence $1/^{51}T_1 propto T^2$. The large Weiss constant, short-range magnetic correlations far above $T_{N1}$, small ordered moment, significant low-energy spin fluctuations, and incommensurate ordered phases all provide explicit evidence for strong magnetic frustration in FeVO$_4$.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
We report magnetic susceptibility, specific heat and muon spin relaxation (muSR) experiments on the triangular antiferromagnet La2Ca2MnO7 which develops a genuine two-dimensional, three-sublattice sqrt{3} times sqrt{3} magnetic order below T_N = 2.8 K. From the susceptibility and specific heat data an estimate of the exchange interaction is derived. A value for the spin-wave gap is obtained from the latter data. The analysis of a previously reported inelastic neutron scattering study yields values for the exchange and spin-wave gap compatible with the results obtained from macroscopic measurements. An appreciable entropy is still missing at 10 K that may be ascribed to intense short-range correlations. The critical paramagnetic fluctuations extend far above T_N, and can be partly understood in terms of two-dimensional spin-wave excitations. While no spontaneous muSR field is observed below T_N, persistent spin dynamics is found. Short-range correlations are detected in this temperature range. Their relation to a possible molecular spin substructure and the observed exotic spin fluctuations is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا