ﻻ يوجد ملخص باللغة العربية
Messenger advertisements (ads) give direct and personal user experience yielding high conversion rates and sales. However, people are skeptical about ads and sometimes perceive them as spam, which eventually leads to a decrease in user satisfaction. Targeted advertising, which serves ads to individuals who may exhibit interest in a particular advertising message, is strongly required. The key to the success of precise user targeting lies in learning the accurate user and ad representation in the embedding space. Most of the previous studies have limited the representation learning in the Euclidean space, but recent studies have suggested hyperbolic manifold learning for the distinct projection of complex network properties emerging from real-world datasets such as social networks, recommender systems, and advertising. We propose a framework that can effectively learn the hierarchical structure in users and ads on the hyperbolic space, and extend to the Multi-Manifold Learning. Our method constructs multiple hyperbolic manifolds with learnable curvatures and maps the representation of user and ad to each manifold. The origin of each manifold is set as the centroid of each user cluster. The user preference for each ad is estimated using the distance between two entities in the hyperbolic space, and the final prediction is determined by aggregating the values calculated from the learned multiple manifolds. We evaluate our method on public benchmark datasets and a large-scale commercial messenger system LINE, and demonstrate its effectiveness through improved performance.
Comparison Lift is an experimentation-as-a-service (EaaS) application for testing online advertising audiences and creatives at JD.com. Unlike many other EaaS tools that focus primarily on fixed sample A/B testing, Comparison Lift deploys a custom ba
Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a compressive learning framework where we estimate model parameters from a sketch of the training data. This sketch is a collect
Traffic signal control has long been considered as a critical topic in intelligent transportation systems. Most existing learning methods mainly focus on isolated intersections and suffer from inefficient training. This paper aims at the cooperative
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only
Machine Learning (ML) is increasingly being used for computer aided diagnosis of brain related disorders based on structural magnetic resonance imaging (MRI) data. Most of such work employs biologically and medically meaningful hand-crafted features