ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient Based Memory Editing for Task-Free Continual Learning

304   0   0.0 ( 0 )
 نشر من قبل Xisen Jin
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore task-free continual learning (CL), in which a model is trained to avoid catastrophic forgetting, but without being provided any explicit task boundaries or identities. However, since CL models are continually updated, the utility of stored seen examples may diminish over time. Here, we propose Gradient based Memory EDiting (GMED), a framework for editing stored examples in continuous input space via gradient updates, in order to create a wide range of more ``challenging examples for replay. GMED-edited examples remain similar to their unedited forms, but can yield increased loss in the upcoming model updates, thereby making the future replays more effective in overcoming catastrophic forgetting. By construction, GMED can be seamlessly applied in conjunction with other memory-based CL algorithms to bring further improvement. Experiments on six datasets validate that GMED is effective, and our single best method significantly outperforms existing approaches on three datasets. Code and data can be found at https://github.com/INK-USC/GMED.



قيم البحث

اقرأ أيضاً

While neural networks are powerful function approximators, they suffer from catastrophic forgetting when the data distribution is not stationary. One particular formalism that studies learning under non-stationary distribution is provided by continua l learning, where the non-stationarity is imposed by a sequence of distinct tasks. Most methods in this space assume, however, the knowledge of task boundaries, and focus on alleviating catastrophic forgetting. In this work, we depart from this view and move the focus towards faster remembering -- i.e measuring how quickly the network recovers performance rather than measuring the networks performance without any adaptation. We argue that in many settings this can be more effective and that it opens the door to combining meta-learning and continual learning techniques, leveraging their complementary advantages. We propose a framework specific for the scenario where no information about task boundaries or task identity is given. It relies on a separation of concerns into what task is being solved and how the task should be solved. This framework is implemented by differentiating task specific parameters from task agnostic parameters, where the latter are optimized in a continual meta learning fashion, without access to multiple tasks at the same time. We showcase this framework in a supervised learning scenario and discuss the implication of the proposed formalism.
A continual learning agent learns online with a non-stationary and never-ending stream of data. The key to such learning process is to overcome the catastrophic forgetting of previously seen data, which is a well known problem of neural networks. To prevent forgetting, a replay buffer is usually employed to store the previous data for the purpose of rehearsal. Previous works often depend on task boundary and i.i.d. assumptions to properly select samples for the replay buffer. In this work, we formulate sample selection as a constraint reduction problem based on the constrained optimization view of continual learning. The goal is to select a fixed subset of constraints that best approximate the feasible region defined by the original constraints. We show that it is equivalent to maximizing the diversity of samples in the replay buffer with parameters gradient as the feature. We further develop a greedy alternative that is cheap and efficient. The advantage of the proposed method is demonstrated by comparing to other alternatives under the continual learning setting. Further comparisons are made against state of the art methods that rely on task boundaries which show comparable or even better results for our method.
169 - Peng Su , Shixiang Tang , Peng Gao 2020
Human beings can quickly adapt to environmental changes by leveraging learning experience. However, the poor ability of adapting to dynamic environments remains a major challenge for AI models. To better understand this issue, we study the problem of continual domain adaptation, where the model is presented with a labeled source domain and a sequence of unlabeled target domains. There are two major obstacles in this problem: domain shifts and catastrophic forgetting. In this work, we propose Gradient Regularized Contrastive Learning to solve the above obstacles. At the core of our method, gradient regularization plays two key roles: (1) enforces the gradient of contrastive loss not to increase the supervised training loss on the source domain, which maintains the discriminative power of learned features; (2) regularizes the gradient update on the new domain not to increase the classification loss on the old target domains, which enables the model to adapt to an in-coming target domain while preserving the performance of previously observed domains. Hence our method can jointly learn both semantically discriminative and domain-invariant features with labeled source domain and unlabeled target domains. The experiments on Digits, DomainNet and Office-Caltech benchmarks demonstrate the strong performance of our approach when compared to the state-of-the-art.
Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire train ing procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا