ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient-based Hyperparameter Optimization through Reversible Learning

129   0   0.0 ( 0 )
 نشر من قبل David Duvenaud
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Tuning hyperparameters of learning algorithms is hard because gradients are usually unavailable. We compute exact gradients of cross-validation performance with respect to all hyperparameters by chaining derivatives backwards through the entire training procedure. These gradients allow us to optimize thousands of hyperparameters, including step-size and momentum schedules, weight initialization distributions, richly parameterized regularization schemes, and neural network architectures. We compute hyperparameter gradients by exactly reversing the dynamics of stochastic gradient descent with momentum.

قيم البحث

اقرأ أيضاً

Hyperparameter optimization aims to find the optimal hyperparameter configuration of a machine learning model, which provides the best performance on a validation dataset. Manual search usually leads to get stuck in a local hyperparameter configurati on, and heavily depends on human intuition and experience. A simple alternative of manual search is random/grid search on a space of hyperparameters, which still undergoes extensive evaluations of validation errors in order to find its best configuration. Bayesian optimization that is a global optimization method for black-box functions is now popular for hyperparameter optimization, since it greatly reduces the number of validation error evaluations required, compared to random/grid search. Bayesian optimization generally finds the best hyperparameter configuration from random initialization without any prior knowledge. This motivates us to let Bayesian optimization start from the configurations that were successful on similar datasets, which are able to remarkably minimize the number of evaluations. In this paper, we propose deep metric learning to learn meta-features over datasets such that the similarity over them is effectively measured by Euclidean distance between their associated meta-features. To this end, we introduce a Siamese network composed of deep feature and meta-feature extractors, where deep feature extractor provides a semantic representation of each instance in a dataset and meta-feature extractor aggregates a set of deep features to encode a single representation over a dataset. Then, our learned meta-features are used to select a few datasets similar to the new dataset, so that hyperparameters in similar datasets are adopted as initializations to warm-start Bayesian hyperparameter optimization.
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
Gradient-based meta-learning and hyperparameter optimization have seen significant progress recently, enabling practical end-to-end training of neural networks together with many hyperparameters. Nevertheless, existing approaches are relatively expen sive as they need to compute second-order derivatives and store a longer computational graph. This cost prevents scaling them to larger network architectures. We present EvoGrad, a new approach to meta-learning that draws upon evolutionary techniques to more efficiently compute hypergradients. EvoGrad estimates hypergradient with respect to hyperparameters without calculating second-order gradients, or storing a longer computational graph, leading to significant improvements in efficiency. We evaluate EvoGrad on two substantial recent meta-learning applications, namely cross-domain few-shot learning with feature-wise transformations and noisy label learning with MetaWeightNet. The results show that EvoGrad significantly improves efficiency and enables scaling meta-learning to bigger CNN architectures such as from ResNet18 to ResNet34.
We develop a new approach to learn the parameters of regression models with hidden variables. In a nutshell, we estimate the gradient of the regression function at a set of random points, and cluster the estimated gradients. The centers of the cluste rs are used as estimates for the parameters of hidden units. We justify this approach by studying a toy model, whereby the regression function is a linear combination of sigmoids. We prove that indeed the estimated gradients concentrate around the parameter vectors of the hidden units, and provide non-asymptotic bounds on the number of required samples. To the best of our knowledge, no comparable guarantees have been proven for linear combinations of sigmoids.
Most machine learning algorithms are configured by one or several hyperparameters that must be carefully chosen and often considerably impact performance. To avoid a time consuming and unreproducible manual trial-and-error process to find well-perfor ming hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods, e.g., based on resampling error estimation for supervised machine learning, can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing. It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا