ﻻ يوجد ملخص باللغة العربية
Human beings can quickly adapt to environmental changes by leveraging learning experience. However, the poor ability of adapting to dynamic environments remains a major challenge for AI models. To better understand this issue, we study the problem of continual domain adaptation, where the model is presented with a labeled source domain and a sequence of unlabeled target domains. There are two major obstacles in this problem: domain shifts and catastrophic forgetting. In this work, we propose Gradient Regularized Contrastive Learning to solve the above obstacles. At the core of our method, gradient regularization plays two key roles: (1) enforces the gradient of contrastive loss not to increase the supervised training loss on the source domain, which maintains the discriminative power of learned features; (2) regularizes the gradient update on the new domain not to increase the classification loss on the old target domains, which enables the model to adapt to an in-coming target domain while preserving the performance of previously observed domains. Hence our method can jointly learn both semantically discriminative and domain-invariant features with labeled source domain and unlabeled target domains. The experiments on Digits, DomainNet and Office-Caltech benchmarks demonstrate the strong performance of our approach when compared to the state-of-the-art.
Human beings can quickly adapt to environmental changes by leveraging learning experience. However, adapting deep neural networks to dynamic environments by machine learning algorithms remains a challenge. To better understand this issue, we study th
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain adaptation remains largely underexp
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distance
Learning transferable and domain adaptive feature representations from videos is important for video-relevant tasks such as action recognition. Existing video domain adaptation methods mainly rely on adversarial feature alignment, which has been deri
Depth estimation from stereo images is carried out with unmatched results by convolutional neural networks trained end-to-end to regress dense disparities. Like for most tasks, this is possible if large amounts of labelled samples are available for t