ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Diagnosis of COVID-19 from a Single Radiological Image

107   0   0.0 ( 0 )
 نشر من قبل Pengyi Zhang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiological image is currently adopted as the visual evidence for COVID-19 diagnosis in clinical. Using deep models to realize automated infection measurement and COVID-19 diagnosis is important for faster examination based on radiological imaging. Unfortunately, collecting large training data systematically in the early stage is difficult. To address this problem, we explore the feasibility of learning deep models for COVID-19 diagnosis from a single radiological image by resorting to synthesizing diverse radiological images. Specifically, we propose a novel conditional generative model, called CoSinGAN, which can be learned from a single radiological image with a given condition, i.e., the annotations of the lung and COVID-19 infection. Our CoSinGAN is able to capture the conditional distribution of visual finds of COVID-19 infection, and further synthesize diverse and high-resolution radiological images that match the input conditions precisely. Both deep classification and segmentation networks trained on synthesized samples from CoSinGAN achieve notable detection accuracy of COVID-19 infection. Such results are significantly better than the counterparts trained on the same extremely small number of real samples (1 or 2 real samples) by using strong data augmentation, and approximate to the counterparts trained on large dataset (2846 real images). It confirms our method can significantly reduce the performance gap between deep models trained on extremely small dataset and on large dataset, and thus has the potential to realize learning COVID-19 diagnosis from few radiological images in the early stage of COVID-19 pandemic. Our codes are made publicly available at https://github.com/PengyiZhang/CoSinGAN.



قيم البحث

اقرأ أيضاً

112 - Haibo Qi , Yuhan Wang , Xinyu Liu 2021
In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine wh ether a patient is infected with coronavirus. However, there are some laybacks can be considered regarding to this diagnostic method, such as time consuming and low accuracy. As a relatively large organ of human body, important spatial features would be lost if the lungs were diagnosed utilizing two dimensional slice image. Therefore, in this paper, a deep learning model with 3D image was designed. The 3D image as input data was comprised of two-dimensional pulmonary image sequence and from which relevant coronavirus infection 3D features were extracted and classified. The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.
The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the rapidly evolving disease requires highly sensitive and specific diagnostics. While real-time RT-PCR is the most commonly used, these can take up to 8 hours, and require significant effort from healthcare professionals. As such, there is a critical need for a quick and automatic diagnostic system. Diagnosis from chest CT images is a promising direction. However, current studies are limited by the lack of sufficient training samples, as acquiring annotated CT images is time-consuming. To this end, we propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training. Specifically, we use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets and adopt the prototypical network for classification. We validate the efficacy of the proposed model in comparison with other competing methods on two publicly available and annotated COVID-19 CT datasets. Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
The outbreak of novel coronavirus disease (COVID- 19) has claimed millions of lives and has affected all aspects of human life. This paper focuses on the application of deep learning (DL) models to medical imaging and drug discovery for managing COVI D-19 disease. In this article, we detail various medical imaging-based studies such as X-rays and computed tomography (CT) images along with DL methods for classifying COVID-19 affected versus pneumonia. The applications of DL techniques to medical images are further described in terms of image localization, segmentation, registration, and classification leading to COVID-19 detection. The reviews of recent papers indicate that the highest classification accuracy of 99.80% is obtained when InstaCovNet-19 DL method is applied to an X-ray dataset of 361 COVID-19 patients, 362 pneumonia patients and 365 normal people. Furthermore, it can be seen that the best classification accuracy of 99.054% can be achieved when EDL_COVID DL method is applied to a CT image dataset of 7500 samples where COVID-19 patients, lung tumor patients and normal people are equal in number. Moreover, we illustrate the potential DL techniques in drug or vaccine discovery in combating the coronavirus. Finally, we address a number of problems, concerns and future research directions relevant to DL applications for COVID-19.
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019 and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent years, deep learning-based appro aches have shown impressive performance in myriad image recognition tasks. However, they usually require a large number of annotated data for training. Inspired by Ground Glass Opacity (GGO), a common finding in COIVD-19 patients CT scans, we proposed in this paper a novel self-supervised pretraining method based on pseudo lesions generation and restoration for COVID-19 diagnosis. We used Perlin noise, a gradient noise based mathematical model, to generate lesion-like patterns, which were then randomly pasted to the lung regions of normal CT images to generate pseudo COVID-19 images. The pairs of normal and pseudo COVID-19 images were then used to train an encoder-decoder architecture based U-Net for image restoration, which does not require any labelled data. The pretrained encoder was then fine-tuned using labelled data for COVID-19 diagnosis task. Two public COVID-19 diagnosis datasets made up of CT images were employed for evaluation. Comprehensive experimental results demonstrated that the proposed self-supervised learning approach could extract better feature representation for COVID-19 diagnosis and the accuracy of the proposed method outperformed the supervised model pretrained on large scale images by 6.57% and 3.03% on SARS-CoV-2 dataset and Jinan COVID-19 dataset, respectively.
Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. This paper is intended to provide experts (medical or otherwise) and technicians with new insights into the ways deep learning techniques are used in this regard and how they potentially further works in combatting the outbreak of COVID-19.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا