ترغب بنشر مسار تعليمي؟ اضغط هنا

3D RegNet: Deep Learning Model for COVID-19 Diagnosis on Chest CT Image

113   0   0.0 ( 0 )
 نشر من قبل Haibo Qi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a 3D-RegNet-based neural network is proposed for diagnosing the physical condition of patients with coronavirus (Covid-19) infection. In the application of clinical medicine, lung CT images are utilized by practitioners to determine whether a patient is infected with coronavirus. However, there are some laybacks can be considered regarding to this diagnostic method, such as time consuming and low accuracy. As a relatively large organ of human body, important spatial features would be lost if the lungs were diagnosed utilizing two dimensional slice image. Therefore, in this paper, a deep learning model with 3D image was designed. The 3D image as input data was comprised of two-dimensional pulmonary image sequence and from which relevant coronavirus infection 3D features were extracted and classified. The results show that the test set of the 3D model, the result: f1 score of 0.8379 and AUC value of 0.8807 have been achieved.

قيم البحث

اقرأ أيضاً

The current pandemic, caused by the outbreak of a novel coronavirus (COVID-19) in December 2019, has led to a global emergency that has significantly impacted economies, healthcare systems and personal wellbeing all around the world. Controlling the rapidly evolving disease requires highly sensitive and specific diagnostics. While real-time RT-PCR is the most commonly used, these can take up to 8 hours, and require significant effort from healthcare professionals. As such, there is a critical need for a quick and automatic diagnostic system. Diagnosis from chest CT images is a promising direction. However, current studies are limited by the lack of sufficient training samples, as acquiring annotated CT images is time-consuming. To this end, we propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training. Specifically, we use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets and adopt the prototypical network for classification. We validate the efficacy of the proposed model in comparison with other competing methods on two publicly available and annotated COVID-19 CT datasets. Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
140 - Qingsen Yan , Bo Wang , Dong Gong 2020
A novel coronavirus disease 2019 (COVID-19) was detected and has spread rapidly across various countries around the world since the end of the year 2019, Computed Tomography (CT) images have been used as a crucial alternative to the time-consuming RT -PCR test. However, pure manual segmentation of CT images faces a serious challenge with the increase of suspected cases, resulting in urgent requirements for accurate and automatic segmentation of COVID-19 infections. Unfortunately, since the imaging characteristics of the COVID-19 infection are diverse and similar to the backgrounds, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to establish a new deep convolutional neural network tailored for segmenting the chest CT images with COVID-19 infections. We firstly maintain a large and new chest CT image dataset consisting of 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of the infected lung can be enhanced by adjusting the global intensity, in the proposed deep CNN, we introduce a feature variation block which adaptively adjusts the global properties of the features for segmenting COVID-19 infection. The proposed FV block can enhance the capability of feature representation effectively and adaptively for diverse cases. We fuse features at different scales by proposing Progressive Atrous Spatial Pyramid Pooling to handle the sophisticated infection areas with diverse appearance and shapes. We conducted experiments on the data collected in China and Germany and show that the proposed deep CNN can produce impressive performance effectively.
88 - Shuang Liang 2021
In this paper, we present a hybrid deep learning framework named CTNet which combines convolutional neural network and transformer together for the detection of COVID-19 via 3D chest CT images. It consists of a CNN feature extractor module with SE at tention to extract sufficient features from CT scans, together with a transformer model to model the discriminative features of the 3D CT scans. Compared to previous works, CTNet provides an effective and efficient method to perform COVID-19 diagnosis via 3D CT scans with data resampling strategy. Advanced results on a large and public benchmarks, COV19-CT-DB database was achieved by the proposed CTNet, over the state-of-the-art baseline approachproposed together with the dataset.
Purpose. Imaging plays an important role in assessing severity of COVID 19 pneumonia. However, semantic interpretation of chest radiography (CXR) findings does not include quantitative description of radiographic opacities. Most current AI assisted C XR image analysis framework do not quantify for regional variations of disease. To address these, we proposed a four region lung segmentation method to assist accurate quantification of COVID 19 pneumonia. Methods. A segmentation model to separate left and right lung is firstly applied, and then a carina and left hilum detection network is used, which are the clinical landmarks to separate the upper and lower lungs. To improve the segmentation performance of COVID 19 images, ensemble strategy incorporating five models is exploited. Using each region, we evaluated the clinical relevance of the proposed method with the Radiographic Assessment of the Quality of Lung Edema (RALE). Results. The proposed ensemble strategy showed dice score of 0.900, which is significantly higher than conventional methods (0.854 0.889). Mean intensities of segmented four regions indicate positive correlation to the extent and density scores of pulmonary opacities under the RALE framework. Conclusion. A deep learning based model in CXR can accurately segment and quantify regional distribution of pulmonary opacities in patients with COVID 19 pneumonia.
235 - Liang Sun , Zhanhao Mo , Fuhua Yan 2020
Chest computed tomography (CT) becomes an effective tool to assist the diagnosis of coronavirus disease-19 (COVID-19). Due to the outbreak of COVID-19 worldwide, using the computed-aided diagnosis technique for COVID-19 classification based on CT ima ges could largely alleviate the burden of clinicians. In this paper, we propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images. Specifically, we first extract location-specific features from CT images. Then, in order to capture the high-level representation of these features with the relatively small-scale data, we leverage a deep forest model to learn high-level representation of the features. Moreover, we propose a feature selection method based on the trained deep forest model to reduce the redundancy of features, where the feature selection could be adaptively incorporated with the COVID-19 classification model. We evaluated our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP). The accuracy (ACC), sensitivity (SEN), specificity (SPE) and AUC achieved by our method are 91.79%, 93.05%, 89.95% and 96.35%, respectively. Experimental results on the COVID-19 dataset suggest that the proposed AFS-DF achieves superior performance in COVID-19 vs. CAP classification, compared with 4 widely used machine learning methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا