ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding spintronics in F/N/F structures through a mechanical analogy

76   0   0.0 ( 0 )
 نشر من قبل Yaroslaw Bazaliy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ya. B. Bazaliy




اسأل ChatGPT حول البحث

A mechanical equivalent system is introduced to mimic the behavior of multilayer structures with diffusive spin transport. The analogy allows one to use existing mechanical intuition to predict the influence of various parameters on spin torques and spin-dependent magnetoresistance. In particular, it provides an understanding of the sign-changing behavior of spin torque in asymmetric F/N/F spin valves. It further helps to uncover the physical reason behind the singular behavior of spin magnetoresistance in devices with ultra-thin N-layers.

قيم البحث

اقرأ أيضاً

The influence of an asymmetric in-plane magnetic anisotropy on the thermally activated spin current is studied theoretically for two different systems; (i) the system consisting of a ferromagnetic insulator in a direct contact with a nonmagnetic meta l, and the sandwich structure consisting of a ferromagnetic insulating part sandwiched between two nonmagnetic metals. It is shown that when the difference between the temperatures of the two nonmagnetic metals in a structure is not large, the spin pumping currents from the magnetic part to the nonmagnetic ones are equal in amplitude and have opposite directions, so only the spin torque current contributes to the total spin current. The spin current flows then from the nonmagnetic metal with the higher temperature to the nonmagnetic metal having a lower temperature. Its amplitude varies linearly with the difference in temperatures. In addition, we have found that if the magnetic anisotropy is in the layer plane, then the spin current increases with the magnon temperature, while in the case of an out-of-plane magnetic anisotropy the spin current decreases when the magnon temperature enhances. Enlarging the difference between the temperatures of the nonmagnetic metals, the linear response becomes important, as confirmed by analytical expressions inferred from the Fokker-Planck approach and by the results obtained upon a full numerical integration of the stochastic Landau-Lifshitz-Gilbert equation.
We report low frequency tunnel current noise characteristics of an organic monolayer tunnel junction. The measured devices, n-Si/alkyl chain (C18H37)/Al junctions, exhibit a clear 1/ f &#947; power spectrum noise with 1< &#947; <1.2. We observe a sli ght bias-dependent background of the normalized current noise power spectrum (SI/I^2). However, a local increase is also observed over a certain bias range, mainly if V > 0.4 V, with an amplitude varying from device to device. We attribute this effect to an energy-dependent trap-induced tunnel current. We find that the background noise, SI, scales with >. A model is proposed showing qualitative agreements with our experimental data.
We report on the transport and low-frequency noise measurements of MoS2 thin-film transistors with thin (2-3 atomic layers) and thick (15-18 atomic layers) channels. The back-gated transistors made with the relatively thick MoS2 channels have advanta ges of the higher electron mobility and lower noise level. The normalized noise spectral density of the low-frequency 1/f noise in thick MoS2 transistors is of the same level as that in graphene. The MoS2 transistors with the atomically thin channels have substantially higher noise levels. It was established that, unlike in graphene devices, the noise characteristics of MoS2 transistors with thick channels (15-18 atomic planes) could be described by the McWhorter model. Our results indicate that the channel thickness optimization is crucial for practical applications of MoS2 thin-film transistors.
We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS2 field-effect transistors revealing the relative contributions of the MoS2 channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS2 transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS2 transistors, are 1.5 x 10^19 eV-1cm-3 and 2 x 10^20 eV-1cm-3 for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS2 transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS2 and other van der Waals materials.
Low frequency noise close to the carrier remains little explored in spin torque nano oscillators. However, it is crucial to investigate as it limits the oscillators frequency stability. This work addresses the low offset frequency flicker noise of a TMR-based spin-torque vortex oscillator in the regime of large amplitude steady oscillations. We first phenomenologically expand the nonlinear auto-oscillator theory aiming to reveal the properties of this noise. We then present a thorough experimental study of the oscillators $1/f$ flicker noise and discuss the results based on the theoretical predictions. Hereby, we connect the oscillators nonlinear dynamics with the concept of flicker noise and furthermore refer to the influence of a standard $1/f$ noise description based on the Hooge formula, taking into account the non-constant magnetic oscillation volume, which contributes to the magnetoresistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا